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Abstract. A symmetric union in the 3-space R3 is a knot, obtained from a knot in R
3

and its mirror image, which are symmetric with respect to a 2-plane in R
3, by taking

the connected sum of them and moreover by connecting them with some vertical twists
along the plane. In this paper, we study the p-coloring of a symmetric union.
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1. Introduction

A symmetric union was introduced by Kinoshita and Terasaka [2]. A symmetric union is known
to be a ribbon knot which bounds a smooth disk in the 4-ball. (See [5] for the definition.) Every
ribbon knot with minimal crossing number ≤ 10 is a symmetric union [1, 3] and it is known that all
two-bridge ribbon knots can be represented as symmetric unions. (See [4, 6].)

A p-coloring of a diagram D of a knot is an assignment of one of the numbers 0, 1, . . . , p−1 to each
arc of D such a way that at each crossing the sum of the numbers of the under-crossings is equal to
twice the number of the over-crossing modulo p. The number of p-colorings of D is a knot invariant.
We denote it by cp(K) for a knot K. A p-coloring is said to be non-trivial if it has at least two
numbers. A knot K is p-colorable if K has a diagram which admits a non-trivial p-coloring.

In this paper, we study p-colorings of a symmetric union and show the following theorem.

Theorem 1.1. Let K̂ be a knot with a symmetric union presentation with a partial knot K and p, a
positive odd prime integer. Then K is p-colorable if and only if K̂ is p-colorable.

Corollary 1.2. Let K̂ be a knot with a symmetric union presentation with a partial knot K and p, a
positive odd prime integer. Then cp(K) = p if and only if cp(K̂) = p.
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2. The definition of a symmetric union

Let R
3 be the 3-space with x-, y-, and z-axes. Let R

3
+ = {(x, y, z) ∈ R

3 | x > 0} and R
3− =

{(x, y, z) ∈ R
3 | x < 0}. Throughout this paper, a tangle denotes two arcs properly embedded in

a 3-ball. We denote the tangle made of |m| half-twists along the z-axis as a diagram by an integer
m ∈ Z and the horizontal trivial tangle by ∞ with respect to the x-axis as in Figure 1. A symmetric
union is defined as follows.

Definition 2.1. We take a knot K̃ in R
3− and its mirror image K̃∗ in R

3
+ such that K̃ and K̃∗ are

symmetric with respect to the yz-plane R
2
yz as in Figure 2(a). Here we consider a diagram of a knot

in the xz-plane R
2
xz and we denote the diagrams of K̃ and K̃∗ by D̃ and D̃∗, respectively. We take

0-tangles T0, T1, . . . , Tk as in Figure 2(a). Then we replace the tangles T0, T1, . . . , Tk with tangles
∞, m1,m2, . . . ,mk as in Figure 2(b). (See Figure 3 for example.) Here we assume that mi �= ∞
(1 ≤ i ≤ k). The resultant diagram is called a symmetric union presentation and we denote it by

D̃ ∪ D̃∗(m1, . . . ,mk). The knot K̃ is called the partial knot of the symmetric union.
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If a knot K has a diagram D̃ ∪ D̃∗(m1, . . . ,mk), then the knot K is called a symmetric union.
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3. Proofs

Proof of Theorem 1.1. By a result of [3], we know that det(K̂) = (det(K))2. Note that det(K̂) is
divisible by p if and only if det(K) is divisible by p. On the other hand, it is known that a knot is
p-colorable if and only if p devides its determinant when p is an odd prime integer. [7] Thus we know

that K̂ is p-colorable if and only if K is p-colorable.
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4. The number of colorings of a knot

We can easily show the following result since we can obtain a p-coloring of a symmetric union from
a p-coloring of the partial knot.

Proposition 4.1. Let K̂ be a knot with a symmetric union presentation with a partial knot K and p,
a positive integer. Then cp(K) ≤ cp(K̂).

Proposition 4.2. [8] We have cp(K1)cp(K2) = p · cp(K̂) if K̂ is the connected sum of K1 and K2.

Now we consider the following question.

Question. Let K̂ be a knot with a symmetric union presentation with a partial knot K. Does the
equality cp(K)2 = p · cp(K̂) always hold?

Example 4.3. We take a p-coloring of 61 as in Figure 5.

x1 x3

x4

x5x6

x2

Figure 4

Then we have the following congruences:
2x1 ≡ x3 + x4 (mod p)
2x4 ≡ x6 + x1 (mod p)
2x6 ≡ x1 + x2 (mod p)
2x2 ≡ x6 + x5 (mod p)
2x5 ≡ x2 + x3 (mod p)
2x3 ≡ x4 + x5 (mod p)
Thus we have the following congruences:
−x3 + 6x5 − 5x6 ≡ 0 (mod p)
−x1 + 4x5 − 3x6 ≡ 0 (mod p)
−x2 − 4x5 + 5x6 ≡ 0 (mod p)
−9x5 + 9x6 ≡ 0 (mod p)
−x4 + 2x5 − x6 ≡ 0 (mod p)
9x5 − 9x6 ≡ 0 (mod p)

In the case when p �= 3m, we have x5 ≡ x6 by the fourth congruence. Thus we have x1 ≡ x2 ≡
x3 ≡ x4 ≡ x5 ≡ x6 by the other congruences. Therefore we know that cp(61) = p.
In the case when p = 3m and m �= 3n, we have x5 ≡ x6 (mod m) by the fourth congruence. Then we
have 9m choices for the pair (x5, x6). Thus we know that cp(61) = 9m = 3p.
In the case when p = 3m and m = 3n, we have x5 ≡ x6 (mod n) by the fourth congruence. Then we
have 81n choices for the pair (x5, x6). Thus we know that cp(61) = 81n = 9p.
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Thus we have

cp(61) =

⎧⎨
⎩

9p (p = 9n (n ∈ N))
3p (p = 3m,m �= 3n (m,n ∈ N))
p (p �= 3m (m ∈ N))

.(1)

On the other hand, 61 has a symmetric union presentation with 31 as the partial knot as follows:

Figure 5

We can easily calculate cp(31) as follows:

cp(31) =

{
3p (p = 3m (m ∈ N))
p (p �= 3m (m ∈ N))

.(2)

So we know that cp(31)
2 �= p · cp(61) if p = 3m,m �= 3n (m,n ∈ N). By using Proposition 4.2, we

can obtain infinitely many symmetric unions with such a property.

References

1. M. Eisermann and C. Lamm: Equivalence of symmetric union diagrams, J. Knot Theory Ramifications 16 (2007),
no. 7, 879–898.

2. S. Kinoshita and H.Terasaka: On unions of knots, Osaka J. Math. Vol. 9 (1957), 131–153.
3. C. Lamm: Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537–550.
4. C. Lamm: Symmetric union presentations for 2-bridge ribbon knots, arxiv:math.GT/0602395, 2006.
5. W. B. R. Lickorish: An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York,

1997.
6. P. Lisca: Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429–472.
7. C. Livingston: Knot theory, Carus Mathematical Monographs, 24. Mathematical Association of America, Washington,

DC, 1993.
8. J. H. Przytycki: 3-coloring and other elementary invariants of knots, Knot theory (Warsaw, 1995), 275–295, Banach

Center Publ., 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998.

Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193,

Japan.

Email address: tanakat@gifu-u.ac.jp

������ ���������

�


