ON FOX COLORINGS OF SYMMETRIC UNIONS

TOSHIFUMI TANAKA

Abstract

A symmetric union in the 3 －space \mathbb{R}^{3} is a knot，obtained from a knot in \mathbb{R}^{3} and its mirror image，which are symmetric with respect to a 2 －plane in \mathbb{R}^{3} ，by taking the connected sum of them and moreover by connecting them with some vertical twists along the plane．In this paper，we study the p－coloring of a symmetric union．

Key words：Symmetric union；p－coloring；partial knot．

1．Introduction

A symmetric union was introduced by Kinoshita and Terasaka［2］．A symmetric union is known to be a ribbon knot which bounds a smooth disk in the 4－ball．（See［5］for the definition．）Every ribbon knot with minimal crossing number ≤ 10 is a symmetric union $[1,3]$ and it is known that all two－bridge ribbon knots can be represented as symmetric unions．（See［4，6］．）

A p－coloring of a diagram D of a knot is an assignment of one of the numbers $0,1, \ldots, p-1$ to each arc of D such a way that at each crossing the sum of the numbers of the under－crossings is equal to twice the number of the over－crossing modulo p ．The number of p－colorings of D is a knot invariant． We denote it by $c_{p}(K)$ for a knot K ．A p－coloring is said to be non－trivial if it has at least two numbers．A knot K is p－colorable if K has a diagram which admits a non－trivial p－coloring．

In this paper，we study p－colorings of a symmetric union and show the following theorem．
Theorem 1．1．Let \hat{K} be a knot with a symmetric union presentation with a partial knot K and p ，a positive odd prime integer．Then K is p－colorable if and only if \hat{K} is p－colorable．
Corollary 1．2．Let \hat{K} be a knot with a symmetric union presentation with a partial knot K and p ，a positive odd prime integer．Then $c_{p}(K)=p$ if and only if $c_{p}(\hat{K})=p$ ．
Acknowledgements．The author is partially supported by the Ministry of Education，Science，Sports and Culture，Grant－in－Aid for Scientific Research（C），2019－2021（19K03465）．

2．The definition of a symmetric union

Let \mathbb{R}^{3} be the 3 －space with x－，y－，and z－axes．Let $\mathbb{R}_{+}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0\right\}$ and $\mathbb{R}_{-}^{3}=$ $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x<0\right\}$ ．Throughout this paper，a tangle denotes two arcs properly embedded in a 3－ball．We denote the tangle made of $|m|$ half－twists along the z－axis as a diagram by an integer $m \in \mathbb{Z}$ and the horizontal trivial tangle by ∞ with respect to the x－axis as in Figure 1．A symmetric union is defined as follows．
Definition 2．1．We take a knot \tilde{K} in \mathbb{R}_{-}^{3} and its mirror image \tilde{K}^{*} in \mathbb{R}_{+}^{3} such that \tilde{K} and \tilde{K}^{*} are symmetric with respect to the $y z$－plane $\mathbb{R}_{y z}^{2}$ as in Figure $2(a)$ ．Here we consider a diagram of a knot in the $x z$－plane $\mathbb{R}_{x z}^{2}$ and we denote the diagrams of \tilde{K} and \tilde{K}^{*} by \tilde{D} and \tilde{D}^{*} ，respectively．We take 0 －tangles $T_{0}, T_{1}, \ldots, T_{k}$ as in Figure $2(a)$ ．Then we replace the tangles $T_{0}, T_{1}, \ldots, T_{k}$ with tangles $\infty, m_{1}, m_{2}, \ldots, m_{k}$ as in Figure 2（b）．（See Figure 3 for example．）Here we assume that $m_{i} \neq \infty$ $(1 \leq i \leq k)$ ．The resultant diagram is called a symmetric union presentation and we denote it by $\tilde{D} \cup \tilde{D}^{*}\left(m_{1}, \ldots, m_{k}\right)$ ．The knot \tilde{K} is called the partial knot of the symmetric union．

[^0]If a knot K has a diagram $\tilde{D} \cup \tilde{D}^{*}\left(m_{1}, \ldots, m_{k}\right)$, then the $\operatorname{knot} K$ is called a symmetric union.

Figure 1

Figure 2

Figure 3

3. Proofs

Proof of Theorem 1.1. By a result of [3], we know that $\operatorname{det}(\hat{K})=(\operatorname{det}(K))^{2}$. Note that $\operatorname{det}(\hat{K})$ is divisible by p if and only if $\operatorname{det}(K)$ is divisible by p. On the other hand, it is known that a knot is p-colorable if and only if p devides its determinant when p is an odd prime integer. [7] Thus we know that \hat{K} is p-colorable if and only if K is p-colorable.

4. The number of colorings of a knot

We can easily show the following result since we can obtain a p-coloring of a symmetric union from a p-coloring of the partial knot.

Proposition 4.1. Let \hat{K} be a knot with a symmetric union presentation with a partial knot K and p, a positive integer. Then $c_{p}(K) \leq c_{p}(\hat{K})$.

Proposition 4.2. [8] We have $c_{p}\left(K_{1}\right) c_{p}\left(K_{2}\right)=p \cdot c_{p}(\hat{K})$ if \hat{K} is the connected sum of K_{1} and K_{2}.

Now we consider the following question.
Question. Let \hat{K} be a knot with a symmetric union presentation with a partial knot K. Does the equality $c_{p}(K)^{2}=p \cdot c_{p}(\hat{K})$ always hold?

Example 4.3. We take a p-coloring of 6_{1} as in Figure 5 .

Figure 4
Then we have the following congruences:
$2 x_{1} \equiv x_{3}+x_{4}(\bmod p)$
$2 x_{4} \equiv x_{6}+x_{1}(\bmod p)$
$2 x_{6} \equiv x_{1}+x_{2}(\bmod p)$
$2 x_{2} \equiv x_{6}+x_{5}(\bmod p)$
$2 x_{5} \equiv x_{2}+x_{3}(\bmod p)$
$2 x_{3} \equiv x_{4}+x_{5}(\bmod p)$
Thus we have the following congruences:
$-x_{3}+6 x_{5}-5 x_{6} \equiv 0(\bmod p)$
$-x_{1}+4 x_{5}-3 x_{6} \equiv 0(\bmod p)$
$-x_{2}-4 x_{5}+5 x_{6} \equiv 0(\bmod p)$
$-9 x_{5}+9 x_{6} \equiv 0(\bmod p)$
$-x_{4}+2 x_{5}-x_{6} \equiv 0(\bmod p)$
$9 x_{5}-9 x_{6} \equiv 0(\bmod p)$
In the case when $p \neq 3 m$, we have $x_{5} \equiv x_{6}$ by the fourth congruence. Thus we have $x_{1} \equiv x_{2} \equiv$ $x_{3} \equiv x_{4} \equiv x_{5} \equiv x_{6}$ by the other congruences. Therefore we know that $c_{p}\left(6_{1}\right)=p$.
In the case when $p=3 m$ and $m \neq 3 n$, we have $x_{5} \equiv x_{6}(\bmod m)$ by the fourth congruence. Then we have $9 m$ choices for the pair $\left(x_{5}, x_{6}\right)$. Thus we know that $c_{p}\left(6_{1}\right)=9 m=3 p$.
In the case when $p=3 m$ and $m=3 n$, we have $x_{5} \equiv x_{6}(\bmod n)$ by the fourth congruence. Then we have $81 n$ choices for the pair $\left(x_{5}, x_{6}\right)$. Thus we know that $c_{p}\left(6_{1}\right)=81 n=9 p$.

Thus we have
(1)

$$
c_{p}\left(6_{1}\right)= \begin{cases}9 p & (p=9 n(n \in \mathbb{N})) \\ 3 p & (p=3 m, m \neq 3 n(m, n \in \mathbb{N})) \\ p & (p \neq 3 m(m \in \mathbb{N}))\end{cases}
$$

On the other hand, 6_{1} has a symmetric union presentation with 3_{1} as the partial knot as follows:

Figure 5
We can easily calculate $c_{p}\left(3_{1}\right)$ as follows:

$$
\mathrm{c}_{p}\left(3_{1}\right)= \begin{cases}3 p & (p=3 m(m \in \mathbb{N})) \\ p & (p \neq 3 m(m \in \mathbb{N}))\end{cases}
$$

So we know that $c_{p}\left(3_{1}\right)^{2} \neq p \cdot c_{p}\left(6_{1}\right)$ if $p=3 m, m \neq 3 n(m, n \in \mathbb{N})$. By using Proposition 4.2, we can obtain infinitely many symmetric unions with such a property.

References

1. M. Eisermann and C. Lamm: Equivalence of symmetric union diagrams, J. Knot Theory Ramifications 16 (2007), no. 7, 879-898.
2. S. Kinoshita and H.Terasaka: On unions of knots, Osaka J. Math. Vol. 9 (1957), 131-153.
3. C. Lamm: Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537-550.
4. C. Lamm: Symmetric union presentations for 2-bridge ribbon knots, arxiv:math.GT/0602395, 2006.
5. W. B. R. Lickorish: An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997.
6. P. Lisca: Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472.
7. C. Livingston: Knot theory, Carus Mathematical Monographs, 24. Mathematical Association of America, Washington, DC, 1993.
8. J. H. Przytycki: 3-coloring and other elementary invariants of knots, Knot theory (Warsaw, 1995), 275-295, Banach Center Publ., 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998.

Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193, JAPAN.

Email address: tanakat@gifu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification．Primary 57M25；Secondary 57M27．

