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Abstract. In this paper, we introduce the partial alternating number for a symmetric union and
show that for any positive integer n, there exists a symmetric union with partial alternating number
≥ n. We also show that there exist infinitely many symmetric unions with partial alternating number
one.

1 Introduction

The union of knots was introduced by S. Kinoshita and H. Terasaka [2]. A symmetric union [3] is a knot which
is obtained from the connected sum of a knot and its mirror image by inserting some vertical twists along the
symmetry axis to the diagram. A symmetric union is known to be a ribbon knot [4]. In this paper, we study
symmetric unions for alternating knots. For any symmetric union, we have only finitely many alternating partial
knots for the symmetric union presentations (Proposition 3.1). We define the partial alternating number for a
symmetric union as the number of alternating knots (up to mirror images). Then we have the following.

Theorem 1.1. For any positive interger n, there exists a symmetric union with partial alternating number ≥ n.

The notation for prime knots up to 10 crossings is due to Rolfsen’s book [1]. We denote the mirror image
of a knot K by K∗. In Section 2, we shall define a symmetric union. In Section 3, we shall define the partial
alternating number for a symmetric union and prove Theorem 1.1. In Section 4, we shall show that there exist
infinitely many symmetric unions with partial alternating number one.

2 Definition

We define a symmetirc union [3] as follows. We denote the tangles made of half twists by integers n ∈ Z and
the horizontal trivial tangle by ∞ as in Figure 1.

n =

n > 0 n < 0

0 =

=

Figure 1: Tangles.
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Definition 2.1. Let DK be an unoriented diagram of knot K and D∗
K , the diagram DK reflected at an axis

in the plane. We take k 0-tangles Ti (i = 0, . . . , k) on the symmetry axis as in Figure 2(a). Then we replace
the tangles Ti with T0 = ∞ and Ti = ni ∈ Z for i = 1, . . . , k as in Figure 2(b). We call the resultant diagram
a symmetric union and write DK ∪D∗

K (n1, . . . , nk) and the diagram is called a symmetric union presentation.
The knot K is called the partial knot for the symmetric union presentation. We say that a knot K is a symmetric
union if K has a symmetric union presentation.
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Figure 2: A symmetric union.

3 Symmetric unions and alternating knots

Proposition 3.1. For any symmetric union, we have only finitely many alternating partial knots for the
symmetric union presentations.

Proof. LetK be a knot with a symmetric union presentation with K as a partial knot. Then by [3, Theorem 2.6],
we have det(K) = det(K)2, where det(K) is the determinant of K. Suppose that K is a (non-trivial) alternating
knot. Then by [6] and [5, Chapter 8], we have degQK(x) = c(K) − 1, where degQK is the maximal degree of
the Q-polynomial of K. Since any alternating knot is quasi-alternating, by [7], we have degQK(x) < det(K).
Thus we obtain that c(K)− 1 ≤ (c(K)− 1)2 < (det(K))2 = det(K).

Definition 3.2. Let K be a symmetric union. Then the number of alternating partial knots (excluding mirror
images) for the symmetric union presentations for K is called the partial alternating number for K.

Remark 3.3. Clearly, the partial alternating number is an invariant of a symmetric union. For example, the
connected sum of a prime alternating knot and its mirror image is a symmetric union with partial alternating
number ≥ 1. In particular, the partial alternating number of the connected sum of 31 and its mirror image is
equal to one. However we do not know if the equality holds in general.

Proof of Theorem 1.1. For a positive integer m ≥ 2, let Km be a knot which has the symmetric union
presentation Dm as shown in Figure 3.
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Figure 3: Km.

Figure 4: A flype.

Note that Dm has �2mi=131, which is the connected sum of 2m 3′1s, as the partial knot. Then for an integer p
(1 ≤ p ≤ m), by flyping K1, . . . ,Kp to Dm as shown in Figure 4, we have a symmetric union presentation with

the partial knot (�pi=13
∗
1)�(�

2m−p
i=1 31) denoted by Hp.

Then it is easily seen that the Jones polynomials [5] of Hp1 and Hp2 are distinct if p1 �= p2. So we have at
least m distinct alternating partial knots (up to mirror images) for Km.

4 Examples

Proposition 4.1. There exist infinitely many symmetric unions with partial alternating number one.

Proof. For a positive integer n, let K̂n be a knot which has the symmetric union presentation D ∪ D∗(n) as
shown in Figure 5. Suppose that K is a partial knot for a symmetric union presentation for K̂n. By using
the same method as in the proof of Theorem 1.1, we know that c(K) − 1 < det(K) = 3. Since c(K) ≤ 3 and
det(K) = 3, K is either 31 or 3∗1. Thus we know that the partial alternating number of K̂n is equal to one. By
using the Jones polynomial, we know that K̂n1

�= K̂n2
if n1 �= n2.

Example 4.2. Let K be the connected sum of 41 and 4∗1 and let K be the partial knot for a symmetric union
presentation for K. Then as in the proof of Proposition 4.1, we know that c(K) − 1 < det(K) = 5. There are
only four alternating knots 41, 51, 4

∗
1 and 5∗1 such that the crossing numbers ≤ 5 and the determinants are equal

to 5. Thus we know that the partial alternating number of K is ≤ 2.
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Let K̃n be a knot which has the symmetric union presentation D ∪D∗(n) as shown in Figure 6. Suppose
that K is a partial knot for a symmetric union presentation for K̃n. As in the proof of Proposition 4.1, we
know that c(K)− 1 < det(K) = 9. There are only four alternating knots, 61, 91, 31�31 and 31�3

∗
1, such that the

crossing numbers ≤ 9 and the determinants are equal to 9, up to mirror images. Thus we know that the partial
alternating number of K̃n is ≤ 4. By using the same method as in the proof of Theorem 1.1, we know that
31�31 and 31�3

∗
1 are the partial knots for K̃n. So we know that the partial alternating number of K̃n is ≥ 2.

n

Figure 5: K̂n.

n

Figure 6: K̃n.

Question. Can the knots 61 and 91 be partial knots for K̃n?
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