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Abstract. Symmetric unions are links obtained from a knot in the 3-space R
3 by taking diagrams

of the knot and its mirror image, which are symmetrically placed with respect to an axis in the
2-plane, and connecting them to obtain a diagram by inserting a 2-tangle with no twists and a finite
number of 2-tangles with twists along the axis in the diagram. The Jones polynomial of a symmetric
union has some interesting properties. In this paper, we give a formula of the Jones polynomial of
a symmetric union.

1 Introduction

A symmetric union was first introduced by Kinoshita and Terasaka [4]. In recent years, Lamm [5] generalized
the definition and investigated the relationship between a symmetric union and a ribbon knot. It is easy to
see that every symmetric union represents a ribbon knot, on the other hand, the converse question is still
open. In this paper, we give the following formula for the Jones polynomial [2] of a knot with a symmetric
union presentation. Let V L(t) = VL(t)/(−t−1/2 − t1/2)c−1 for an oriented link L, where c is the number of the
components of L and VL(t) is the Jones polynomial of L. (See Section 2 for the definition.)

Theorem 1.1. Let K be a knot with a symmetric union presentation DK ∪D∗
K(∞,m1, . . . ,mk)1. Then

VK(t) =
∑

(�1,...,�k)

Πk
i=1(−t−1)mipi(1− (−t−1)mi)qiV DK∪D∗

K(∞,�1,...,�k)w(t),

where �i ∈ {0,∞},
pi =

{
1 (�i = 0)

0 (�i = ∞)

, qi = 1−pi and w =
∑k

i=1 qi+1 for each k-tuple of tangles (�1, . . . , �k). The sum is taken over all combinations
of k tangles 0’s and ∞’s to tangles �1, . . . , �k.

The following corollary generalizes a result of Lamm in the case when s = 1 in [5].

Corollary 1.2. Let K be a link with a symmetric union presentation DK ∪ D∗
K(∞,m1, . . . ,mk)1 and s, a

positive integer. If mi ≡ 0 mod s for each i, then VK(− exp( 2πis )) = VK(− exp( 2πis )) · VK∗(− exp( 2πis )).

A knot is called amphicheiral, if it is isotopic to its mirror image. By Theorem 1.1, we have the following as
special cases.

Theorem 1.3. [7] Let K be a knot with a symmetric union presentation DK ∪D∗
K(∞,m)1. Then

tmVK(t) + (−1)mVK(t−1) = (tm + (−1)m)VK(t) · VK(t−1). In particular, if K is amphicheiral, then VK(t) =
VK(t)VK(t−1).
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In this paper, all knots and links are oriented unless otherwise stated. In Section 2, we give the definitions
of the Jones polynomial of a link and a symmetric union. In Section 3, we shall prove Theorem 1.1, Corollary
1.2 and Theorem 1.3. In Section 4, we shall consider an amphicheiral symmetric union and the property.

Acknowledgements. The author is partially supported by the Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Scientific Research(C), 2019-2021 (19K03465).

2 Definitions

Definition 2.1. Let K be a link in R
3. We denote a diagram of K by DK . The bracket polynomial of a diagram

of K [3][6], < DK > can be defined as a polynomial which satisfies the following identities.

i) < >= 1,

ii) < DK ∪ >= −(A2 +A−2) < DK >,

iii) < >= A < > +A−1 < >.

We define VDK
(t) ∈ Z[t1/2, t−1/2] by VDK

(t) = {(−A3)−δ(DK) < DK >}t1/2=A−2 for any diagram DK for K,
where δ(DK) is the writhe of DK . It is shown that VDK

(t) is an invariant of K [3]. Then we denote VDK
(t) by

VK(t) and call it the Jones polynomial of K.

Here we give the definition of a symmetirc union as follows. (See [5] for the original definition.) We denote the
tangle made of half twists by an integer m ∈ Z and the horizontal trivial tangle by ∞ as in Fig. 1.

Definition 2.2. Let D be an unoriented diagram of a knot and D∗ the diagram D reflected at an axis in the
plane. We replace the tangles Ti = 0 (i = 0, . . . , k) on the symmetry axis by either Ti = ∞ or Ti = mi ∈ Z for
each i, providing that at least one of Ti’s is replaced by ∞ as shown in Fig. 1. We call the result a symmetric
union and denote it by D ∪D∗(m0, . . . ,mk)μ, where μ is the number of ∞-tangles on the axis.

D DD* D*

0:

T0

T1

T2

Tk

m

m

m

1

2

k

:

-2:

2:

-1:

1:

Figure 1: A symmetric union

If a link L has a diagram D ∪D∗(m0, . . . ,mk)μ, then the diagram is called a symmetric union presentation
for L. We say that a link L is a symmetric union if L has a symmetric union presentation.
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3 A formula of the Jones polynomial

Let Tm = (−A−3)m−Am

−A−2−A2 and Sm = Am for an indeterminate A and a non-zero integer m.

Proof of Theorem 1.1. By using the identities of the bracket polynomial in Defnition 2.1, we have
< DK ∪D∗

K(∞,m1,m2, . . . ,mk)1 >= Am1/|m1|DK ∪D∗
K(∞,m1 − 1,m2, . . . ,mk)1

+F1 < DK ∪D∗
K(∞,∞,m2, . . . ,mk)2 > = · · · = A

∑|m1|
i=1 m1/|m1| < DK ∪D∗

K(∞, 0,m2, . . . ,mk)1 >
+(F1 + · · ·+ F|m1|) < DK ∪D∗

K(∞,∞,m2, . . . ,mk)2 > = Am1 < DK ∪D∗
K(∞, 0,m2, . . . ,mk) >

+(
∑|m1|

j=1 Fj) < DK ∪D∗
K(∞,∞,m2, . . . ,mk)2 > , where each Fj is some polynomial.

Now we calculate a formula of
∑|m1|

j=1 Fj by considering the unknot instead of K as follows. We assume that
DK is a diagram as in Fig. 2 so that we have a symmetric union of the unknot. We denote the diagram in Fig.
2 by D◦.

Figure 2: D◦

Then by calculating each term by using the identities in Definition 2.1, we have
< D◦ ∪D∗

◦(∞,m1,m2, . . . ,mk)1 >= (−A−3m1/|m1|)|m1| · · · (−A−3mk/|mk|)|mk|(−A−2 −A2)

= (−1)
∑k

i=1 |mi|A−3
∑k

i=1 mi(−A−2 −A2),

< D◦ ∪D∗
◦(∞, 0,m2, . . . ,mk)1 >= (−1)

∑k
i=2 |mi|A−3

∑k
i=2 mi(−A−2 −A2) and

< D◦ ∪D∗
◦(∞,∞,m2, . . . ,mk)2 >= (−1)

∑k
i=2 |mi|A−3

∑k
i=2 mi(−A−2 −A2)2.

Then we have
|m1|∑
j=1

Fj =
< D◦ ∪D∗

◦(∞,m1,m2, . . . ,mk)1 > − < D◦ ∪D∗
◦(∞, 0,m2, . . . ,mk)1 >

< D◦ ∪D∗◦(∞,∞,m2, . . . ,mk)2 >

=
(−1)

∑k
i=1 |mi|A−3

∑k
i=1 mi(−A−2 −A2)− (−1)

∑k
i=2 |mi|A−3

∑k
i=2 mi(−A−2 −A2)

(−1)
∑k

i=2 |mi|A−3
∑k

i=2 mi(−A−2 −A2)2

=
(−1)|m1|A−3m1 −Am1

−A−2 −A2
=

(−A−3)m1 −Am1

−A−2 −A2
.

Thus
< DK ∪D∗

K(∞,m1,m2, . . . ,mk)1 >= Am1 < DK ∪D∗
K(∞, 0,m2, . . . ,mk)1 >

+
(−A−3)m1 −Am1

−A−2 −A2
< DK ∪D∗

K(∞,∞,m2, . . . ,mk)2 >

= Sm1 < DK ∪D∗
K(∞, 0,m2, . . . ,mk)1 > +Tm1 < DK ∪D∗

K(∞,∞,m2, . . . ,mk)2 >.

By iterating the same argument, we have
< DK ∪D∗

K(∞,m1,m2, . . . ,mk)1 >= Sm1
Sm2

< DK ∪D∗
K(∞, 0, 0,m3, . . . ,mk)1 >

+Sm1
Tm2

< DK ∪D∗
K(∞, 0,∞,m3, . . . ,mk)2 >

+Tm1
Sm2

< DK ∪D∗
K(∞,∞, 0,m3, . . . ,mk)2 >
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+Tm1
Tm2

< DK ∪D∗
K(∞,∞,∞,m3, . . . ,mk)3 >.

Then by induction on k, we know that

< DK ∪D∗
K(∞,m1,m2, . . . ,mk)1 >=

∑
(�1,...,�k)

Πk
i=1(S

pi(�1,...,�k)
mi

T qi(∞,�1,...,�k)
mi

)×

< DK ∪ D∗
K(∞, �1, �2, . . . , �k)w >, where �i ∈ {0,∞}, pi(�1, . . . , �k) = 1 or 0 if �i = 0 or ∞ respectively,

qi(�1, . . . , �k) = 1− pi(�1, . . . , �k) and w =
∑k

i=1 qi(�1, . . . , �k) + 1.

Now we obtain that
VDK∪D∗

K(∞,m1,...,mk)1(A) = (−A)−3
∑k

i=1(−mi) < DK ∪D∗
K(∞,m1,m2, . . . ,mk)1 >

= (−A3)
∑k

i=1 mi < DK ∪D∗
K(∞,m1,m2, . . . ,mk)1 > = (−A3)

∑k
i=1 mi×∑

(�1,...,�k)

Πk
i=1A

mipi(�1,...,�k)
( (−A−3)mi −Ami

−A−2 −A2

)qi(�1,...,�k)

< DK ∪D∗
K(∞, �1, . . . , �k)w >

=
∑

(�1,...,�k)

Πk
i=1(−1)mipi(�1,...,�k)A4mipi(�1,...,�k)

(1− (−1)miA4mi

−A−2 −A2

)qi(�1,...,�k)

< DK ∪D∗
K(∞, �1, . . . , �k)w >.

Using t1/2 = A−2, we have
VDK∪D∗

K(∞,m1,...,mk)1(t) =∑
(�1,...,�k)

Πk
i=1(−1)mipi(�1,...,�k)t−mipi(�1,...,�k)

(1− (−1)mit−mi

−t1/2 − t−1/2

)qi(�1,...,�k)

VDK∪D∗
K(∞,�1,...,�k)w(t)

=
∑

(�1,...,�k)

Πk
i=1(−t−1)mipi(�1,...,�k)

(1− (−1)mit−mi

−t1/2 − t−1/2

)qi(�1,...,�k)

VDK∪D∗
K(∞,�1,...,�k)w(t).

Therefore we obtain
VDK∪D∗

K(∞,m1,...,mk)1(t) =
∑

(�1,...,�k)

Πk
i=1(−t−1)mipi(�1,...,�k)(1− (−1)mit−mi)qi(�1,...,�k)V DK∪D∗

K(∞,�1,...,�k)w(t).

Remark 3.1. By a result of Eisermann ([1], Theorem 1), we know that V DK∪D∗
K(∞,�1,...,�k)w(t) in the statement

of Theorem 1.1 is always a Laurent polynomial. The integers pi, qi and w depend on k-tuple of tangles
(�1, . . . , �k), however we abbreviate the integers for simplicity in the statement of Theorem 1.1.

Proof of Corollary 1.2. By Theorem 1.1, we have VK(− exp ( 2πis )) = V DK∪D∗
K(∞,0,...,0)1(− exp ( 2πis ))

= VK(− exp ( 2πis )) · VK∗(− exp ( 2πis )).

Proof of Theorem 1.3. In the case when k = 1 in Theorem 1.1, we have the formula as follows.
VK(t) = (−1)mt−mV DK∪D∗

K(∞,0)1(t) + (1− (−1)mt−m)V DK∪D∗
K(∞,∞)2(t).

Then the first part of the theorem is obtained as follows.
tmVK(t) + (−1)mVK(t−1) = {(−1)mV DK∪D∗

K(∞,0)1(t)+ (tm − (−1)m)V DK∪D∗
K(∞,∞)2(t))}+

{tmV DK∪D∗
K(∞,0)1(t) + ((−1)m − tm)V DK∪D∗

K(∞,∞)2(t)}
= (tm + (−1)m)V DK∪D∗

K(∞,0)1(t) = (tm + (−1)m)VK(t)VK(t−1).

The latter part of the theorem follows immediately from the first part because VK(t) = VK(t−1) if K is
amphicheiral [6].

4 Examples

For a positive integer m, let Km be a knot with the symmetric union presentation as described in Fig. 3. It is
easily seen that Km is an amphicheiral knot for each m.

If m = 1, then the Jones polynomial of Km is calculated by Theorem 1.1 as follows.

4

������ ����	
��	






m

m

Figure 3: Km

VK1
(t) = −t−5 + 3t−4 − 7t−3 + 10t−2 − 12t−1 + 15− 12t+ 10t2 − 7t3 + 3t4 − t5.

By a calculation in [7], we know that Vt(Km) cannot have a form f(t)f(t−1) for any Laurent polynomial
f(t) ∈ Z[t, t−1]. Thus, by Theorem 1.3, we know that K1 cannot have a symmetric union presentation DK ∪
D∗

K(∞,m)1. The Jones polynomials of K2 and K3 are calculated as follows.
VK2

(t) = t−7 − 2t−6 + 2t−5 + t−4 − 7t−3 + 12t−2 − 16t−1 + 19− 16t+ 12t2 − 7t3 + t4 + 2t5 − 2t6 + t7

VK3
(t) = −t−8+2t−7−3t−6+t−5+5t−4−14t−3+24t−2−31t−1+35−31t+24t2−14t3+5t4+t5−3t6+2t7−t8

By using Mathematica [8], we know that VK2
(t) and VK3

(t) are irreducible. In particular, they cannot have
a form f(t)f(t−1) for any Laurent polynomial f(t).

Question. Does VKm(t) have a form f(t)f(t−1) for some Laurent polynomial f(t) ∈ Z[t, t−1] for each m > 1?
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