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ON PRIME KNOTS WITH SYMMETRIC UNION PRESENTATIONS

TOSHIFUMI TANAKA

Abstract. A symmetric union is a knot in the 3-space, obtained from a knot and
its mirror image, which are symmetric with respect to a 2-plane in R3, by taking the
connected sum of them and moreover by connecting them with some vertical twists
along the plane. In this paper, we give a sufficient condition for a symmetric union to
be prime.
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1. Introduction

A symmetric union was originally introduced by Kinoshita and Terasaka [2] and later, Lamm [3]
generalized the definition. A symmetric union is known to be an example of a ribbon knot [1].

A knot K is composite if there is a sphere S intersecting K transversally in two points, such that
neither of the 3-balls bounded by S intersects K in a single unknotted spanning arc. The sphere S is
called a decomposing sphere for L. A non-trivial knot is prime if it is not composite. In this paper, we
study a prime knot with a symmetric union presentation. In [6], we have given a sufficient condition
for a symmetric union to be prime. We refine the result as follows.

Theorem 1.1. Let K be a symmetric union with minimal twisting number one and D̃ ∪ D̃∗(m), a

symmetric union presentation of K. If D̃ ∪ D̃∗(∞) is a diagram of a trivial link, then K is prime.

Throughout this paper, ♯{X} denotes the number of elements of X for a finite set X. In Section 2,
we shall give the definitions of a symmetric union and the minimal twisting number. In Section 3, we
shall prove Theorem 1.1. In Section 4, we shall give some examples.
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2. The definition of a symmetric union

A symmetric union is defined as follows. (See [3] for the original definition.) Let R3 be the 3-space
with x-, y-, and z-axes. Let R3

+ = {(x, y, z)|x > 0} and R3
− = {(x, y, z)|x < 0}. Throughout this

paper, a tangle denotes a disjoint union of two arcs properly embedded in a 3-ball. We denote the
tangle made of |m| half-twists along the z-axis as a diagram by an integer m ∈ Z and the horizontal
trivial tangle by ∞ with respect to the x-axis as in Figure 1.

Definition 2.1. We take a knot K̃ in R3
− and its mirror image K̃∗ in R3

+ such that K̃ and K̃∗ are
symmetric with respect to the yz-plane R2

yz as in Figure 2(a). Here we consider a diagram of a knot in

the xz-plane R2
xz and we denote the diagrams of K̃ and K̃∗ by D̃ and D̃∗, respectively. Each disk-arc

pair of T0, T1, . . . , Tk as in Figure 2(a) denotes a diagram of the tangle 0. Then we replace the tangles
T0, T1, . . . , Tk with tangles ∞, m1,m2, . . . ,mk as in Figure 2(b). (See Figure 3 for example.) Here we
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m =
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=

Figure 1

assume that mi ̸= ∞ (1 ≤ i ≤ k). The resultant diagram is called a symmetric union presentation

and we denote it by D̃ ∪ D̃∗(m1, . . . ,mk).
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If a knot K has a diagram D̃ ∪ D̃∗(m1, . . . ,mk), then the knot K is called a symmetric union.

Here we define the minimal twisting number for a symmetric union which was originally introduced
in [5] as follows.
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Definition 2.2. We call the number of non-zero elements in {m1, . . . ,mk} the twisting number for

D̃ ∪ D̃∗(m1, . . . ,mk). The minimal twisting number of a symmetric union K is the smallest number
of the twisting numbers of all symmetric union presentations to K.

Remark 2.3. The minimal twisting number is an invariant of K. The minimal twisting number of
a two-bridge symmetric union is equal to either one or two [4]. We gave an example of a symmetric
union with minimal twisting number two in [5].

3. Proof of Theorem 1.1

Proof of Theorem 1.1. In the case when m is an odd number, the primeness of K follows from the proof
of Proposition 6.1 [6]. From now on, we use notations defined in [6]. We assume that K is composite
in the case when m is an even number. Then it is enough to consider the case when ♯{dg ∩K} = 2 in
the proof of Proposition 6.1 [6]. In that case, we have the following two cases:
(i) dt ⊂ B; or

(ii) dt ⊂ B3
±.

In the case of (i), we have a connected summand of a trivial knot if ♯{dt ∩ K} = 2 and m = 0 if
dt ∩K = ∅. This is a contradiction. In the case of (ii), as in the proof of Theorem 1.2 [6], we take a
simple arc α on dt which connects two intersection points of K and dt. Then we have a 2-component
(split) link L by a surgery of K along α. Then it is easily seen that the linking number of L is non-zero
since m is non-zero. This is a contradiction. Thus we know that K is a prime knot.

4. Symmetric unions of two-bridge knots

Example 4.1. We consider symmetric unions of two-bridge knots. We denote the following two-bridge
knot by T (b1, b2, . . . , b2d) (d > 0). (Each bi (1 ≤ i ≤ 2d) denotes the number of full-twists.)

b1 b3

b2 b2d

b1

2

b3

b b2d

=

Figure 4. A 2-bridge knot

We take a symmetric union of T (b1, b2, . . . , b2d) and its mirror image, as in Figure 5. We denote
the resulting knot by Bm(b1, b2, . . . , b2d). In Figure 5, m represents vertically arranged |m| crossings,
which are right-handed if m > 0 and left-handed if m < 0.

Figure 5. A symmetric union of 2-bridge knots

It is easily seen that B∞(b1, b2, . . . , b2d) is a trivial link. By using the formula of the Jones polynomial
in [5], we know that the Jones polynomial of Bm(b1, b2, . . . , b2d) is as follows:
V (t) = (−1)mt−mF (t)F (t−1)+((−1)m−1)t−m, where F (t) is the Jones polynomial of T (b1, b2, . . . , b2d).
Since T (b1, b2, . . . , b2d) is the alternating knot, we know that the reduced degree of the Jones polynomial

is Σ2d
i=1di and then the minimal degree of F (t)F (t−1) is−Σ2d

i=1di. If−m > Σ2d
i=1di ≥ 2, then the minimal
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degree of V (t) is −Σ2d
i=1di −m > 0. In particular, Bm(b1, b2, . . . , b2d) is not amphicheiral and so the

minimal twisting number of Bm(b1, b2, . . . , b2d) is non-zero. Thus we know that Bm(b1, b2, . . . , b2d) is
a prime knot if −m > Σ2d

i=1di ≥ 2 by Theorem 1.1. We also find that the maximal degree of the
Jones polynomial of Bm(b1, b2, . . . , b2d) is Σ2d

i=1di − m if −m > Σ2d
i=1di ≥ 2. Then by Corollary 7.2

[6], we know that the minimal twisting number of Bm1(b1, b2, . . . , b2d) ♯Bm2(b1, b2, . . . , b2d) is two if
−m1 > Σ2d

i=1di ≥ 2 and −m2 > Σ2d
i=1di ≥ 2, where K1♯K2 denotes the connected sum of two knots K1

and K2.
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