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ON THE JONES POLYNOMIAL OF SYMMETRIC UNIONS WITH TWO

COMPONENTS

TOSHIFUMI TANAKA

Abstract. A symmetric union is a link with a diagram, obtained from diagrams of a
knot in the 3-space and its mirror image. In this paper, we give certain formulas of
the Jones polynomial of a link with a symmetric union presentation and consider an
invariant of symmetric union, which is called the minimal twisting number and show
that there exists a link with a symmetric union presentation such that the minimal
twisting number is strictly larger than the sum of the minimal twisting numbers of its
components.
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1. Introduction

A symmetric union, which is a generalized operation of the connected sum of a knot in the 3-space
and its mirror image, was first introduced by Kinoshita and Terasaka [5]. They showed that the
Alexander polynomial depends only on the parity of the number of half-twists of a trivial tangle on
the symmetry axis. Recently, Lamm [6] generalized their definition and considered the relationship
between a symmetric union and a ribbon link. (See [3] for the definition.) Every link with a symmetric
union presentation is a ribbon link and Lamm showed that every ribbon knot with minimal crossing
number ≤ 10 has a symmetric union presentation [6][2] and it is known that all two-bridge ribbon
knots can be represented as symmetric unions. [7] [9].

Let V L(t) = VL(t)/VOn(t) for an oriented link L of n components, where VL(t) and VOn(t) are
the Jones polynomial of L and the n-component trivial link On respectively. (See Section 2 for the
definition.)

It is known that the Alexander polynomial of a symmetric union of n components (n ≥ 2) is zero
[6]. In this paper we study the Jones polynomial of links with symmetric union presentations and its
topological properties.

Theorem 1.1. Let L be a link with a symmetric union presentation of the form D ∪ D∗(∞2,m).
Then
V L(t) = (−1)mt−mV D∪D∗(∞2,0)(t) + (1− (−1)mt−m)V D∪D∗(∞2,∞)(t).

A link is called amphicheiral, if it is isotopic to its mirror image. By Theorem 1.1, we have the
following.

Theorem 1.2. Let L be a link with a symmetric union presentation of the form D ∪D∗(∞2,m).
Then tmV L(t) + (−1)mV L(t

−1) = (tm + (−1)m)V D∪D∗(∞2,0)(t). In particular, if K is amphicheiral,

then V K(t) = V DK∪D∗
K(∞2,0)(t).

By using the similar proof of Theorem 1.2, we can show that following theorem.

12010 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.

1 ��

������������������������������������������������������������������������������������������



2 TOSHIFUMI TANAKA

Theorem 1.3. Let L be a link with a symmetric union presentation of the form D ∪D∗(∞2,m).
Then tmV L(t) − t−mV L(t

−1) = (tm − t−m)V D∪D∗(∞2,∞)(t). In particular, if L is amphicheiral, then

V L(t) = V D∪D∗(∞2,∞)(t).

Now we restrict to the special values of the Jones polynomial. We denote a (Laurent) polynomial f(t)
evaluated at r by [f(t)]t=r.

Theorem 1.4. Let L be a link with a symmetric union presentation of the form D ∪ D∗(∞2,m).
Then

[
d

dt
V L(t)]t=−1 = m{V D∪D∗(∞2,0)(−1)− V D∪D∗(∞2,∞)(−1)}.

Corollary 1.5. Let L be a link with a symmetric union presentation of the form D ∪D∗(∞2,m).

Then [
d

dt
V L(t)]t=−1 ≡ 0 mod 8|m|.

Remark 1.6. These results can be generalized to the case of D ∪D∗(∞μ,m) (μ ≥ 2).

In this paper, all knots and links are oriented unless otherwise stated. In Section 2, we give the
definitions of the Jones polynomial and a symmetric union. In Section 3, we shall prove Theorem
1.1 and Theorem 1.2. In Section 4, we shall prove Theorem 1.4 and Corollary 1.5. In Section 5, we
introduce the minimal twisting number of a link with a symmetric union presentation. It is the smallest
number of trivial tangles (with twists) appearing on the axis of a symmetric union presentation of
a link, the minimum taken over all symmetric union presentations for the link. We shall show that
there exists a symmetric union such that the minimal twisting number is strictly larger than the sum
of the minimal twisting numbers of its components.

Acknowledgements. This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Young Scientists (B), 2011-2014 23740046).

2. Definitions

Definition 2.1. Let L be a link in the 3-space. We denote a diagram of L by DL. The bracket
polynomial of a diagram of a link L, < DL > can be defined as a polynomial which satisfies the
following identities.

i) < >= 1,

ii) < DL∪ >= −(A2 +A−2) < DL >,

iii) < >= A < > +A−1 < >.

We defines VDL
(t) ∈ Z[t1/2, t−1/2] by VDL

(t) = {(−A3)−ω(DL) < DL >}t1/2=A−2 for any diagram
DL for L, where ω is the writhe of the diagram. (The writhe is the number of positive crossings of
DL minus the number of negative crossings of DL.) It is shown that VDL

(t) is an invariant of the link
[8][4]. Then we denote VDL

(t) by VL(t) and call it the Jones polynomial of L.

Here we define a symmetric union in [6] as follows. We denote the (trivial) tangles made of half twists
by integers n ∈ Z and the horizontal trivial tangle by ∞ as in Figure 1.

Definition 2.2. Let D be an unoriented link diagram and D∗ the diagram D reflected at an axis in
the plane. If in the symmetric placement of D and D∗ we replace the tangles Ti = 0, (i = 1, . . . , k)
on the symmetry axis by Ti = ∞ for i = 1, . . . , μ and Ti = mi ∈ Z for i = μ + 1, . . . , k. We call the
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result a symmetric union of D and D∗ and denote it by D ∪D∗(∞μ,mμ+1, . . . ,mk). See Figure 1 in
the case when μ = 1.
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Figure 1

If a link L has a diagram D ∪D∗(∞μ,mμ+1, . . . ,mk), then the diagram is called a symmetric union
presentation for L and we say that the link L is a symmetric union.

3. The Jones polynomial

Proof of Theorem 1.1. By using a skein relation of Kauffman bracket polynomial, we have

< D ∪D∗(∞2,m) >= Am/|m|D ∪D∗(∞2,m− 1) +F1 < D ∪D∗(∞2,∞) >

= (Am/|m|)|m| < D ∪D∗(∞2, 0) > +(F1 + · · ·+ F|m|) < D ∪D∗(∞2,∞) >

= Am < D ∪D∗(∞2, 0) > +(
∑|m|

j=1 Fj) < D ∪D∗(∞2,∞) >

Now we calculate a formula of
∑|m|

j=1 Fj by considering the unknot instead of K as follows. We assume
that D is a diagram as in Figure 2 so that we have a symmetric union of the unknot. We denote the
diagram by D◦.

Figure 2

Then the resultant symmetric union is a diagram of the unknot with r crossings where r = |m| such
that it can be transformed into a diagram of the unknot with no crossings by r type I Reidemeister
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moves. Thus we have

< D◦ ∪D∗◦(∞2,m) >= (−A−3m/|m|)|m|(−A−2 −A2) = (−1)|m|A−3m(−A−2 −A2),

< D◦ ∪D∗◦(∞2, 0) >= −A−2 −A2,

< D◦ ∪D∗◦(∞2,∞) >= (A−2 +A2)2.

Then we have

|m|∑

j=1

Fj =
< D◦ ∪D∗◦(∞2,m) > −Am < D◦ ∪D∗◦(∞2, 0) >

< D◦ ∪D∗◦(∞2,∞) >

=
(−1)|m|A−3m −Am

−A−2 −A2
=

(−A−3)m −Am

−A−2 −A2
.

Since ω(D ∪D∗(∞2,m)) = −m, we obtain that

VD∪D∗(∞2,m)(A) = (−A3)m < D ∪D∗(∞2,m) >

= (−A3)m{Am < D ∪D∗(∞2, 0) > +
(−A−3)m −Am

−A−2 −A2
< D ∪D∗(∞2,∞) >}

= (−1)mA4m < D ∪D∗(∞2, 0) > +
1− (−1)mA4m

−A−2 −A2
< D ∪D∗(∞2,∞) >

Using t1/2 = A−2, we have

V D∪D∗(∞2,m)(t) = (−1)mt−mV D∪D∗(∞2,0)(t) + (1− (−1)mt−m)V D∪D∗(∞2,∞)(t).

Proof of Theorem 1.2. The first part of the theorem is obtained as follows. By Theorem 1.1, we have

tmV K(t) + (−1)mV K(t−1) = tm((−1)mt−mV D∪D∗(∞2,0)(t) + (1− (−1)mt−m)V D∪D∗(∞2,∞)(t))+

(−1)m((−1)mtmVD∪D∗(∞2,0)(t
−1) + (1− (−1)mtm)V D∪D∗(∞2,∞)(t

−1))

= (−1)mVD∪D∗(∞2,0)(t) + (tm − (−1)m)V D∪D∗(∞2,∞)(t))+

tmVD∪D∗(∞2,0)(t) + ((−1)m − tm)V D∪D∗(∞2,∞)(t)) = (tm + (−1)m)VD∪D∗(∞2,0)(t)

The latter part of the theorem follow immediately from the first part because VK(t) = VK(t−1) if

K is amphicheiral ([8], p.29).

4. Evaluation of the derivative at −1

Proof of Theorem 1.4. By Theorem 1.2, we know that

d

dt
V K(t) =

d

dt
((−1)mt−mV D∪D∗(∞2,0)(t))+

d

dt
((1− (−1)mt−m)V D∪D∗(∞2,∞)(t)).
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Since [
d

dt
V D∪D∗(∞2,0)(t)]t=−1 = 0, we have

[
d

dt
((−t−1)mV D∪D∗(∞2,0)(t))]t=−1 = [

d

dt
(−t−1)m]t=−1(V D∪D∗(∞2,0)(−1)) = m(V D∪D∗(∞2,0)(−1)).

On the one hand, we have

[
d

dt
((1− (−t−1)m)V DK∪D∗

K(∞2,∞)(t))]t=−1

= −m[V D∪D∗(∞2,∞)(t)]t=−1 + [(1− (−t−1)m)
d

dt
V D∪D∗(∞2,∞)(t)]t=−1

= −mV D∪D∗(∞2,∞)(−1).

Therefore we have

[
d

dt
V K(t)]t=−1 = mV D∪D∗(∞2,0)(−1)−mV D∪D∗(∞2,∞)(−1).

Here we need the following theorem due to Eisermann.

Theorem 4.1. [1] If K be a ribbon link, then V K(−1) ≡ 1 mod 8.

Proof of Corollary 1.5. By Theorem 1.4, we have

[
d

dt
V K(t)]t=−1 = mV D∪D∗(∞2,0)(−1)−mV D∪D∗(∞2,∞)(−1).

By Theorem 4.1, we know that VD∪D∗(∞2,0)(−1) and V D∪D∗(∞2,∞)(−1) ≡ 1 mod 8. Thus we have

m(VD∪D∗(∞2,0)(−1)− V D∪D∗(∞2,∞)(−1)) ≡ 0 mod 8|m|.

5. The minimal twisting number

In this section, we introduce the minimal twisting number for a knot with a symmetric union
presentation.

Definition 5.1. We call the number k − μ of DK ∪ D∗
K(∞μ,mμ+1, . . . ,mk) the twisting number of

the symmetric union. The minimal twisting number of a link L with a symmetric union presentation
is the smallest number of the twisting numbers of all symmetric union presentations for L. We denote
it by tw(L).

By the definition, we have the following.

Proposition 5.2. The minimal twisting number is an invariant of a symmetric union.

Remark 5.3. Let L be a link with a symmetric union presentation. If tw(L) = 0, then each component
of L is a connected sum of a knot and its mirror image, could possibly be the unknot.

Example 5.4. For each knotK in {61, 88, 820, 946, 103, 1022, 1035, 10137, 10140, 10153}, we have tw(K) =
1. (See [6].)

By definition, we can easily see the following.

Proposition 5.5. Let L be a symmetric union with the two components K1 and K2. then K1 and
K2 are symmetric uions and satisfies tw(K1) + tw(K2) ≤ tw(L).
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Now we consider the following problem.

Problem. Does the equality of the inequality of Proposition 5.5 always hold?

Example 5.6. Let Lm (m ∈ Z, m �= 0) be the symmetric union with two components K1 and K2 such
that tw(K1) = tw(K2) = 0 as shown in Figure 3. We know that tw(Lm) = 1. In fact, by Theorem
1.1, we have
V Lm(t) = (−1)mt−m(3 − t−3 + t−2 − t−1 − t + t2 − t3) + (1 − (−1)mt−m)(13 − t−5 + 3t−4 − 6t−3 +
9t−2 − 11t−1 − 11t+ 9t2 − 6t3 + 3t4 − t5).
If m > 0, then the maximal degree is 5 and the minimal degree is −m−5. On the one hand, if m < 0,
then the maximal degree is 5 −m and the minimal degree is −5. In particular, we know that Lm is
not amphicheiral. Thus we have tw(Lm) = 1.

L

m

m

Figure 3

Now we consider the following symmetric union L̂ with two components K1 and K2 such that
tw(K1) = 1 and tw(K2) = 0. We know that tw(L̂) ≥ 1. We can show that L̂ cannot have a

L
^

Figure 4

presentation DK ∪D∗
K(∞2,m) if |m| �= 1 by Theorem 1.2 and Corollary 1.5. However we do not know

if L̂ has a presentation DK ∪D∗
K(∞2,±1) at this moment.
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