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Abstract. We show some examples of pairs of knots with the same number of p-colorings for any
positive integer p ≥ 2. In particular, we show that there exists an infinite family of knots with only
trivial p-colorings.
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1. Introduction

In the 1950’s, Fox introduced the concept of a p-coloring of a knot, where p ≥ 2 is an integer. A
p-coloring of a diagram D of a knot K is a map f : {arcs of D} → Z/pZ such that at each crossing,
if the three arcs are mapped to x, y and z, with the z corresponding to the overcrossing, then they
satisfy x + y − 2z ≡ 0 (mod p). We call the number of distinct p-colorings of a diagram of a knot
K, the rank of the p-colorings of K and we denote it by colp(K). We say that a p-coloring is trivial
if it is a constant map. A diagram for K is p-colorable if it has a non-trivial p-coloring. The rank
of the p-colorings of a knot and the p-colorabiliy are invariants of a knot. We know that if a knot is
p-colorable, then it is also pq-colorable for any positive integer q. Conversely, if a knot is pq-colorable
for some positive integers p and q, then the knot is either p-colorable or q-colorable [5].

In this paper, we obtain the following results.

Theorem 1.1. Each pair of knots in the set {(41, 51), (62, 72), (74, 31�41)} (Figure 1) is knots with
the same rank of the p-colorings for any positive integer p ≥ 2.

41 51

62 72

74 413  #1

Figure 1

1 �

����������������������������������������������������������������������������������������



2 SHOU MIZUGUCHI AND TOSHIFUMI TANAKA

In particular,

colp(41) =

{
5p (p = 5m (m ∈ N))
p (p �= 5m (m ∈ N))

(1)

colp(62) =

{
11p (p = 11m (m ∈ N))
p (p �= 11m (m ∈ N))

(2)

colp(74) =

⎧⎪⎪⎨
⎪⎪⎩

15p (p = 15n (n ∈ N))
3p (p = 3m, p �= 5n (m,n ∈ N))
5p (p �= 3m, p = 5n (m,n ∈ N))
p (p �= 3m, 5n (m,n ∈ N))

.(3)

Theorem 1.2. There exists an infinite family of knots {Ki} such that colp(Ki) = p for any positive
integer p ≥ 2.

In Sections 2, we shall give proofs of Theorems 1.1 and 1.2.

Acknowledgements. The second author is partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research(C), 2016-2018 16K05145).

2. Proofs

Proof of Theorem 1.1. First we take a p-coloring of 41 as in Figure 2.

z

wy x

Figure 2

Then we have the following congruences:
2z ≡ x+ y (mod p)
2x ≡ z + w (mod p)
2w ≡ z + y (mod p)
2y ≡ w + x (mod p)
Thus we have the following congruences:
x+ y − 2z ≡ 0 (mod p)
−5z + 5w ≡ 0 (mod p)
y + z − 2w ≡ 0 (mod p)

In the case when p �= 5m, we have z ≡ w by the second congruence. Thus we have x ≡ z and y ≡ z
by the first and the third congruences. Therefore we know that the rank is p.

In the case when p = 5m, we have −z + w ≡ 0 (mod m) by the second congruence. Then we have
25m choices for the pair (w, z). Thus we know that the rank is 25m.

Next we consider a p-coloring of 51 as in Figure 3.
Then we have the following congruences:
2v ≡ x+ y (mod p)
2x ≡ z + v (mod p)
2z ≡ w + x (mod p)
2w ≡ z + y (mod p)
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v

Figure 3

2y ≡ v + w (mod p)
Thus we have the following congruences:
x+ 3y − 4z ≡ 0 (mod p)
5y − 5z ≡ 0 (mod p)
w − 3y + 2z ≡ 0 (mod p)
v + y − 2z ≡ 0 (mod p)

In the case when p �= 5m, we have y ≡ z by the second congruence. Thus we have x ≡ z, w ≡ y
and v ≡ z by the first, the third and the fourth congruences. Therefore we know that the rank is p.

In the case when p = 5m, we have y − z ≡ 0 (mod m) by the second congruence. Then we have
25m choices for the pair (y, z). Thus we know that the rank is 25m.

Thus we know that the ranks of the p-colorings of 41 and 51 are equal. By the same way, we can
show that 62 and 72 have the same rank of the p-colorings.

We consider a p-coloring of 74 as in Figure 3.

tx

u z

y

w

v

Figure 4

Then we have the following congruences:
2t ≡ x+ y (mod p)
2x ≡ u+ t (mod p)
2u ≡ x+ w (mod p)
2y ≡ u+ v (mod p)
2v ≡ t+ z (mod p)
2z ≡ v + w (mod p)
2w ≡ y + z (mod p)
Thus we have the following congruences:
−5x+ 5z ≡ 0 (mod p)
−w − 2x+ 2y + z ≡ 0 (mod p)
−15x+ 15y ≡ 0 (mod p)
u+ 2x− 4y + z ≡ 0 (mod p)
t− 4x+ 4y − z ≡ 0 (mod p)
−4x+ 3y + z ≡ 0 (mod p)

In the case when p �= 3m, 5n, we know that x ≡ y ≡ z by the first and the third congruences. Thus
we have x ≡ t ≡ u ≡ v ≡ w. Hence the rank is equal to p.

�� ����������������������������

��

�������������������������������



4 SHOU MIZUGUCHI AND TOSHIFUMI TANAKA

In the case when p = 5n and p �= 3m, we have x ≡ z (mod n) by the first congruence. Thus we
have 25n choices for the pair (x, z). We also know that x ≡ y (mod p) by the assumption and the
third congruence. Hence we know that the rank is equal to 25n by the rest congruences.

In the case when p = 3m and p �= 5n, we have 5x− 5z ≡ 0 (mod m) where m is not divisible by 5.
Thus we have x ≡ z (mod m) and we have 9m choices for the pair (x, z). Hence the rank is equal to
9m by the rest congruences.

In the case when p = 15n, we know that x ≡ y (mod n) by the third congruence. Thus we have
225n choices for the pair (x, y). Hence we know that the rank is equal to 225n by the rest congruence.

We consider a p-coloring of 31�41 as in Figure 3.

t

v

u w

xy

z

Figure 5

Then we have the following congruences:
2t ≡ u+ v (mod p)
2u ≡ t+ v (mod p)
2v ≡ t+ z (mod p)
2w ≡ x+ u (mod p)
2x ≡ y + w (mod p)
2y ≡ w + z (mod p)
2z ≡ x+ y (mod p)
Then we have the following congruences:
5y − 5z ≡ 0 (mod p)
3v − 3z ≡ 0 (mod p)
x+ v − 2z ≡ 0 (mod p)
u− z ≡ 0 (mod p)
w − 2y + z ≡ 0 (mod p)
x+ y − 2z ≡ 0 (mod p)

In the case when p �= 3m, 5n, we know that v ≡ y ≡ z by the first and the second congruences.
Thus we have v ≡ t ≡ u ≡ w ≡ x. Hence the rank is equal to p.

In the case when p = 5n and p �= 3m, we have y ≡ z (mod n) by the first congruence. Thus we
have 25n choices for the pair (y, z). We also know that v ≡ y (mod p) by the assumption and the
second congruence. Hence we know that the rank is equal to 25n by the rest congruences.

In the case when p = 3m and p �= 5n, we have v ≡ z (mod m) by the second congruence. Thus we
have 9m choices for the pair (v, z). We also know that y ≡ z (mod p) by the assumption and the first
congruence. Hence the rank is equal to 9m by the rest congruences.

In the case when p �= 15n, we know that y ≡ z (mod 5n) by the first congruence. We also know
that v ≡ z (mod 3n) by the second congruence. Thus we have 225n choices for the triad (v, y, z).
Hence we know that the rank is equal to 225n by the rest congruence.

Proof of Theorem 1.2. Let Kc be a knot as in Figure 6. (The number c denotes the number of
full-twists.) We know that det(Kc)=1 [3], where det(Kc) is the knot determinant of Kc . If p is a
prime number, then the knot Kc is not p-colorable since p cannot divide det(Kc) [1]. Suppose that
Kc is p-colorable for some positive integer p ≥ 2. Then Kc is d-colorable for some prime number d
[5], where d is a prime factor of p. This is a contradiction. Thus we know that Kc is not p-colorable
for any positive integer p ≥ 2. Hence colp(Kc) = p for any positive integer p ≥ 2.
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The Jones polynomial V (t) of Kc is easily calculated as follows. (See [2] for the definition. We may
use [Theorem 1.1, [4]] for the calculation.)

V (t) = (−1)ct−c + (1− (−1)ct−c)(−t4 + 2t3 − 3t2 + 4t− 3 + 4t−1 − 3t−2 + 2t−3 − t−4).
Then we know that Kc1 is not equivalent to Kc2 if c1 �= c2. This completes the proof.

c

Figure 6
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