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Littlewood-Paley and Lusin functions of a-parabolic type

Yosuke HISHIKAWA and Masahiro YAMADA

ABSTRACT. For 0 < a < 1, we consider the L(®)-harmonic extensions of L?-functions
on the Euclidean space R™. In this paper, we study Littlewood-Paley and Lusin functions
for L(®)-harmonic extensions, and we give some identities concerning L?-norms of thier
functions.

1. Introduction

Let n > 1 and H be the upper half-space of the (n + 1)-dimensional Euclidean space, that
is, H={X = (x,t) e R"" : 2 = (24,...,2,) € R", t > 0}. For 0 < a < 1, the parabolic
operator L(®) is defined by

(1.1) L@ =9, + (—A,)%,

where 9, = 0/0t, 0; = 0/Jxj, and A, = 0? + - - - + 92. Let C'(H) be the set of all real-valued
continuous functions on H. A function u € C(H) is said to be L(®-harmonic if L(®u = 0 in
the sense of distributions (for details, see Section 2). In this paper, we study Littlewood-Paley
and Lusin functions for L(®-harmonic extensions, and we give some identities concerning L>-
norms of thier functions.

To state our main results, we give some definitions. For 1 < p < oo, the Lebesgue space
LP .= LP(R",dV,) is defined to be the Banach space of Lebesgue measurable (real-valued)
functions on R™ with norm || - || .», where dV,, is the Lebesgue measure on R™. We denote by
W(®) the fundamental solution of L(® (see Section 2 for the definition). We define an L(*)-
harmonic extension cha) of f € L? by

(1.2) HP (@, t) = [ WOz —y, ) f(y)dVily), (2,t) € H.

R”
It is shown that the function cha) is L(®-harmonic on H (see [4, Theorem 5.2]). It is well
known that when a = 1/2, the fundamental solution W 1/?) coincides with the Poisson kernel

for H (see [5, Section 2]). Therefore, the function H(fl/ ?) is the usual harmonic extensions of f.
For a real number «, let Dj = (—0,)" be a fractional differential operator, and FC" the class
of functions ¢ on R, = (0, 0o) such that D}’ is well-defined (for the explicit definitions of D}’
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and FC", see Section 2). For a function u on H, let V,u = (dyu, - - - ,d,u) and |V, u(z,t)|* =
> iy |0ju(z, t)[*. Furthermore, let I be the gamma function.

In this paper, we show the following theorem, which are identities of Littlewood-Paley type
for L(®)-harmonic extensions. When a = 1/2, the following identities are well known (see [7,
pp. 82-83]).

THEOREM 1. Let 0 < o < 1 and f € L?. Then the following identities hold:

o0 1 L o 1 _
| e 0E R @ Pavi(e) de =2t 1
0 n
and

/ / tiflwgﬂi;a) (z,8)]2dV, () dt = 27T (a V)| f|2.
0 n

We also show the following theorem, which are identities of Lusin type for L(*)-harmonic
extensions. When o = 1/2, the following identities are well known (see [6]).
For{ € R"and p > 0, let

CENE) ={(x,t) € H: |z — &P < p 't}

We define Lusin functions for L(®-harmonic extensions. Let

1/2
3](0?5)(5) = (//(a) téfl—%\pfaH;d(az,t)|2dvn(:c) dt)
Co ()
and

1/2
S(6) = ( [ o BT P dt) -

THEOREM 2. Let 0 < o < 1 and f € L% Furthermore, let d,, be the volume of the unit ball
of R™. Then the following identities hold:

ISR V) = dup 2 @I
and

[ IS PAVE) = dup 2 AT 1

We describe the construction of this paper. In Section 2, we recall definitions of the L(*)-
harmonic functions and fractional differential operators. In Section 3, we show the identities of
Littlewood-Paley type in Theorem 1 (see Theorem 3.3 in Section 3). In Section 4, we also show
the identities of Lusin type in Theorem 2 (see Theorem 4.1 in Section 4).
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2. Preliminaries

In this section, we recall some basic properties. We begin with describing the operator
(—A,)* and the L{*-harmonic functions. Since the case o = 1 is trivial, we only describe
the case 0 < a < 1. Let C*°(H) denote the set of all infinitely differentiable functions on
H. Furthermore, let C2°(H ) be the set of all functions in C*°(H) with compact support. For
0 <a<1,(—A,)*is the convolution operator defined by

Y +y,t) —P(,t)

|y‘n+2a

(2.1) (—A,)*Y(x,t) == —C o lim AV, (y)

e——+0 |y‘>5

forall ¢ € C°(H) and (z,t) € H, where C,, , = —4°7"/*T((n + 2a)/2) /T(—a) > 0. Let
L) .= —9, + (—A,)* be the adjoint operator of L(®). Then, a function u € C(H) is said to
be L(®-harmonic if u satisfies L(®u = 0 in the sense of distributions, that is,

/ lu L|dV,1 < oo and / w LpdV, 1 = 0 forall 1 € C(H).
H H
We describe the fundamental solution of L(*). For (z,t) € H, let

W) = o [ exp(otle i) V(o)

1
(2m)"
(22) _ / e—t‘27r5|2a627ri£-§ an(g)
where x - ¢ denotes the inner product on R™ and |¢| = (¢ - €)1/2. The function W(® is the
fundamental solution of L(® and it is L(*)-harmonic on H. Furthermore, W () € C>®(H).

We also recall definitions of the fractional integral and differential operators for functions
on Ry = (0, 00) (for details, see [2]). For a real number ~ > 0, let

(2.3) FCr:={pe CRy): pt) =O0(t™") (t — co) for some &’ > K}.

For a function ¢ € FC ™", we can define the fractional integral D, "¢ of ¢ by

1 [ee]
(2.4) D, "p(t) := m/o ™ ro(r +t)dr, teER,.

We put FC? := C(R,) and DY := . Moreover, let
(2.5) FCr = {p; 0"l € FCUFIMy,

where [k] is the smallest integer greater than or equal to x. Then, we can also define the
fractional derivative Dy of p € FC" by

(2.6) Dip(t) =D, "7 ((—a) ) (), teR,.

Clearly, when x € Ny := N U {0}, the operator Dy coincides with the ordinary differential
operator (—0;)". For a real number x, we may call both (2.4) and (2.6) the fractional derivatives
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of ¢ with order k. And, we call Dy the fractional differential operator with order . Here, we
give some examples of fractional derivatives of elementary functions.

EXAMPLE 2.1. Let k > 0 and v be real numbers. Then, we have the following.
(1) Dle " = g"e "™,
I'(k+v)

) If —k < v, then D/t™" = )

.
3. Littlewood-Paley functions of a-parabolic type

For a function f € L2, we denote by f or F(f) the Fourier transform of f, that is,

FO=F(f)©) = s fy)e ™0 dv,(y), &eR™

Letn > 1and 0 < a < 1 be fixed. Fory € NJ and 1 < p < o0, define the interval /(v p)

by
_ { (v eR:v> —(n/20)(1/p) — hl/2a} (p # o0)
I(v,p) ==
{v €R:v > —|y]/2a} U {0} (p = o0).

LEMMA 3.1. ([3, Theorem 3.4]) Let 0 < a« < 1,1 < p < oo, andy € Nj. If [ € LP and
v € I(v,p), then the derivative D} 0] cha)(:v, t) is well defined, and

DYOH (a,t) = [ DIIW O (x -y, t) f(y)dVauly).

R’VL

Furthermore, there exists a constant C = C'(n, o, p,7y,v) > 0 such that
DYYHY ()] < ORIy £,
Sorall (x,t) € H.
We give properties of fractional derivatives of L(®-harmonic extensions.

LEMMA 3.2. Let 0 < a < 1 and f € L>. Then the following statements hold-
(1) For a real number v > — =,
DyW (@ t) = [ [2mg[2ovetRPre e2mivs gy (¢).
R”
Furthermore, for integers 1 < j < nandl € Ny,

85W(°‘)(x,t) :/ (27m'€j)Ee_t‘%ﬂza627”'5”'g dv,(&).

n
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(2) For a real number v > — -,

DYH 1) = [ |2mefr f(€)e P s av (e).

R”

Furthermore, for integers 1 < j < nand( € Ny,
OH (1) = / (2mig;)" f(§)e P 2 AV, (6).
PROOF. (1) Since v > —3=, we have

/ / TlVImr =t |opg Pelvle= (IR gy (€) dr < oo
0 n

Differentiating through the integral (2.2) with respect to ¢, the Fubini theorem and Example 2.1
(1) imply that

| S « o
DEW O e1) = 57— / -1 / DI —(rHne 2mive g1 () dr

= / ( 7_(1,}7,,711)?167(7+t)\27r§|2a dT) e qV, (€)
re \I'([v]| —v)

_/ (Dg —t|27r§|2°‘> 2mix-& dr dV (6)
‘27T£’2aueft|27r£|2a eZm’z-{ an<€>
Rn
Furthermore, differentiating through the integral (2.2) with respect to x, we have
g g
OW @ (z,t) = [ (2mi&;) e Prel 2zt gy ().
J . J
2) By Lemma 3.1 and Lemma 3.2 (1), we have
y

DYH (2,8) = | DYWO(z —y. 1) f(y)dV,(y)

Rn

:/ /() / [2mg P e BT ERETE Y () dVi(y)

B / j2me | ( F(y)e 2 dvn<y)) RIS
R Rn

:/ |2ﬂ_£’2auf(§)e—t|2rr§|2a€2m'x-5 an<§)
]Rn

Furthermore, we have

OH P (@, t) = [ oW (@ —y,t) f(y)dVi(y)

Rn
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:/ f(y) / (2mig;) e BT ETEIE AV (6) dVi(y)
27TZ£] —2m’y-§ an(y)) e—t|271'§|2°‘627ri:r:{ an(S)

/ <2m§j)ff<f> 2R 2nie gy (g

This completes the proof. ]
We give identities of Littlewood-Paley type for L(*)-harmonic extensions.

THEOREM 3.3. Let 0 < o < 1 and f € L?. Then the following identities hold:

3.1 / / N DEHE (2, 6) PV () dt = 27T ()| |2
(3.2) /0 / té—lwm;a) (z,8)dV,,(z) dt = 27 =T (™ )|| f]|2.

PROOF. We show the identity (3.1). By Lemma 3.2 (2), we have
DEH (w,t) = [ [2mg] f(€)e P e AV (€) = F () (a),
R”

where ¢, (&) = |27€|f(&)e 127" Therefore, we obtain
/ / FEU D H (2, 1) PV (2) di = / [ F ) @) Vi) dt
n 0 R™
= [ [ leopavie ae= [ [ prePifepe e avie) ar
0 0 R7
— [T a g i) [ (@raviie
R" Rn

0
We show the identity (3.2). By Lemma 3.2 (2), for 1 < 57 < n, we have

My () = / (2migy) f(©)e P T AV, (6) = F () (),

where v, ;(€) = (2mi€;) f(€)e 2" | Therefore, we obtain

/OO/ ta VY (1) PdVi (a) dt = /talz () (@) 2V, () dt
o Jan
- [ ta*Z WslPav(e) dt = [ ta—lz / 2mie, P () P27 v () i
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= / vt [ RrePIf@ P av, (€ dt = 27T (07 | (P ava(e)

This completes the proof. ]

4. Lusin functions of a-parabolic type
We recall the definitions of Lusin functions for L(®-harmonic extensions. For £ € R™ and

p >0, let
C(e) = {(a,t) € H: o — & < p~'t).

p

Lusin functions for L(®)-harmonic extensions are defined by

1/2
(41) S}C; (//C:(a) *717l"D2aH(C¥)<x7t)|2dvn(x) dt)

and

1/2
42) 8}72@:( /. ti-lv”a\W&‘“)mt)\?dvm)dt) .
(&)

We give identities of Lusin type for L(®)-harmonic extensions.

THEOREM 4.1. Let 0 < o < 1 and f € L. Furthermore, let d,, be the volume of the unit
ball of R™. Then the following identities hold:

4.3) / SO PVi(€) = dypE 22T (0 ) | £]125

(4.4) / SO PAVL(E) = dupF2- 4T (0 ) |2

PROOF. We show the identity (4.3). Let ®¢(z,t) be the characteristic function of the set
C$%)(€). The Fubini theorem implies that

JRCHGRIAG

= /R ( / OO/ e, t) 45 DFH (0, 1) PV () dt) av, ()
/ / S (/R :(&,1) an(f)) D H (e, 1) PV () .
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Since

Theorem 3.3 implies that

” — np_% té_ t% . x,t w(x) dt
SV (E)Pdv,(€) = d DM 24V, (z) d
Rn 0 n
_n 1 _
= dpp 22272 (@ | f]172-

The proof of the identity (4.4) is similar. This completes the proof. 0
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