Littlewood-Paley and Lusin functions of α -parabolic type

Yôsuke HISHIKAWA and Masahiro YAMADA

ABSTRACT. For $0 < \alpha \le 1$, we consider the $L^{(\alpha)}$ -harmonic extensions of L^2 -functions on the Euclidean space \mathbb{R}^n . In this paper, we study Littlewood-Paley and Lusin functions for $L^{(\alpha)}$ -harmonic extensions, and we give some identities concerning L^2 -norms of thier functions.

1. Introduction

Let $n \ge 1$ and H be the upper half-space of the (n+1)-dimensional Euclidean space, that is, $H = \{X = (x,t) \in \mathbb{R}^{n+1} : x = (x_1,\ldots,x_n) \in \mathbb{R}^n, \ t>0\}$. For $0 < \alpha \le 1$, the parabolic operator $L^{(\alpha)}$ is defined by

(1.1)
$$L^{(\alpha)} := \partial_t + (-\Delta_x)^{\alpha},$$

where $\partial_t = \partial/\partial t$, $\partial_j = \partial/\partial x_j$, and $\Delta_x = \partial_1^2 + \cdots + \partial_n^2$. Let C(H) be the set of all real-valued continuous functions on H. A function $u \in C(H)$ is said to be $L^{(\alpha)}$ -harmonic if $L^{(\alpha)}u = 0$ in the sense of distributions (for details, see Section 2). In this paper, we study Littlewood-Paley and Lusin functions for $L^{(\alpha)}$ -harmonic extensions, and we give some identities concerning L^2 -norms of thier functions.

To state our main results, we give some definitions. For $1 \leq p \leq \infty$, the Lebesgue space $L^p := L^p(\mathbb{R}^n, dV_n)$ is defined to be the Banach space of Lebesgue measurable (real-valued) functions on \mathbb{R}^n with norm $\|\cdot\|_{L^p}$, where dV_n is the Lebesgue measure on \mathbb{R}^n . We denote by $W^{(\alpha)}$ the fundamental solution of $L^{(\alpha)}$ (see Section 2 for the definition). We define an $L^{(\alpha)}$ -harmonic extension $\mathcal{H}_f^{(\alpha)}$ of $f \in L^p$ by

(1.2)
$$\mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} W^{(\alpha)}(x-y,t) f(y) dV_n(y), \quad (x,t) \in H.$$

It is shown that the function $\mathcal{H}_f^{(\alpha)}$ is $L^{(\alpha)}$ -harmonic on H (see [4, Theorem 5.2]). It is well known that when $\alpha=1/2$, the fundamental solution $W^{(1/2)}$ coincides with the Poisson kernel for H (see [5, Section 2]). Therefore, the function $\mathcal{H}_f^{(1/2)}$ is the usual harmonic extensions of f.

For a real number κ , let $\mathcal{D}_t^{\kappa}=(-\partial_t)^{\kappa}$ be a fractional differential operator, and \mathcal{FC}^{κ} the class of functions φ on $\mathbb{R}_+=(0,\infty)$ such that $\mathcal{D}_t^{\kappa}\varphi$ is well-defined (for the explicit definitions of \mathcal{D}_t^{κ}

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25; Secondary 42B10, 35K05.

Keywords and phrases: harmonic extension, Littlewood-Paley function, Lusin function, parabolic operator of fractional order

This work was supported in part by Grant-in-Aid for Scientific Research (C) (No. 16K05198), Japan Society for the Promotion of Science.

and \mathcal{FC}^{κ} , see Section 2). For a function u on H, let $\nabla_x u = (\partial_1 u, \cdots, \partial_n u)$ and $|\nabla_x u(x,t)|^2 = \sum_{j=1}^n |\partial_j u(x,t)|^2$. Furthermore, let Γ be the gamma function.

In this paper, we show the following theorem, which are identities of Littlewood-Paley type for $L^{(\alpha)}$ -harmonic extensions. When $\alpha=1/2$, the following identities are well known (see [7, pp. 82–83]).

THEOREM 1. Let $0 < \alpha \le 1$ and $f \in L^2$. Then the following identities hold:

$$\int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{\frac{1}{\alpha}-1} |\mathcal{D}_{t}^{\frac{1}{2\alpha}} \mathcal{H}_{f}^{(\alpha)}(x,t)|^{2} dV_{n}(x) dt = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^{2}}^{2}$$

and

$$\int_0^\infty \int_{\mathbb{R}^n} t^{\frac{1}{\alpha}-1} |\nabla_x \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) dt = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2.$$

We also show the following theorem, which are identities of Lusin type for $L^{(\alpha)}$ -harmonic extensions. When $\alpha = 1/2$, the following identities are well known (see [6]).

For $\xi \in \mathbb{R}^n$ and $\rho > 0$, let

$$C_{\rho}^{(\alpha)}(\xi) := \{(x,t) \in H : |x - \xi|^{2\alpha} \le \rho^{-1}t\}.$$

We define Lusin functions for $L^{(\alpha)}$ -harmonic extensions. Let

$$\mathcal{S}_{f,t}^{(\alpha)}(\xi) = \left(\iint_{C_{\rho}^{(\alpha)}(\xi)} t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) dt \right)^{1/2}$$

and

$$\mathcal{S}_{f,x}^{(\alpha)}(\xi) = \left(\iint_{C_{\rho}^{(\alpha)}(\xi)} t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} |\nabla_x \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) \ dt \right)^{1/2}.$$

THEOREM 2. Let $0 < \alpha \le 1$ and $f \in L^2$. Furthermore, let d_n be the volume of the unit ball of \mathbb{R}^n . Then the following identities hold:

$$\int_{\mathbb{R}^n} |\mathcal{S}_{f,t}^{(\alpha)}(\xi)|^2 dV_n(\xi) = d_n \rho^{-\frac{n}{2\alpha}} 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2$$

and

$$\int_{\mathbb{D}^n} |\mathcal{S}_{f,x}^{(\alpha)}(\xi)|^2 dV_n(\xi) = d_n \rho^{-\frac{n}{2\alpha}} 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2.$$

We describe the construction of this paper. In Section 2, we recall definitions of the $L^{(\alpha)}$ -harmonic functions and fractional differential operators. In Section 3, we show the identities of Littlewood-Paley type in Theorem 1 (see Theorem 3.3 in Section 3). In Section 4, we also show the identities of Lusin type in Theorem 2 (see Theorem 4.1 in Section 4).

2. Preliminaries

In this section, we recall some basic properties. We begin with describing the operator $(-\Delta_x)^{\alpha}$ and the $L^{(\alpha)}$ -harmonic functions. Since the case $\alpha=1$ is trivial, we only describe the case $0<\alpha<1$. Let $C^{\infty}(H)$ denote the set of all infinitely differentiable functions on H. Furthermore, let $C_c^{\infty}(H)$ be the set of all functions in $C^{\infty}(H)$ with compact support. For $0<\alpha<1$, $(-\Delta_x)^{\alpha}$ is the convolution operator defined by

$$(2.1) \qquad (-\Delta_x)^{\alpha} \psi(x,t) := -C_{n,\alpha} \lim_{\varepsilon \to +0} \int_{|y| > \varepsilon} \frac{\psi(x+y,t) - \psi(x,t)}{|y|^{n+2\alpha}} dV_n(y)$$

for all $\psi \in C_c^{\infty}(H)$ and $(x,t) \in H$, where $C_{n,\alpha} = -4^{\alpha}\pi^{-n/2}\Gamma\big((n+2\alpha)/2\big)/\Gamma(-\alpha) > 0$. Let $\widetilde{L}^{(\alpha)} := -\partial_t + (-\Delta_x)^{\alpha}$ be the adjoint operator of $L^{(\alpha)}$. Then, a function $u \in C(H)$ is said to be $L^{(\alpha)}$ -harmonic if u satisfies $L^{(\alpha)}u = 0$ in the sense of distributions, that is,

$$\int_{H} |u| \widetilde{L}^{(\alpha)} \psi |dV_{n+1} < \infty \quad \text{and} \quad \int_{H} u| \widetilde{L}^{(\alpha)} \psi dV_{n+1} = 0 \text{ for all } \psi \in C_{c}^{\infty}(H).$$

We describe the fundamental solution of $L^{(\alpha)}$. For $(x,t) \in H$, let

(2.2)
$$W^{(\alpha)}(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-t|\xi|^{2\alpha} + i x \cdot \xi) dV_n(\xi)$$
$$= \int_{\mathbb{R}^n} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi).$$

where $x \cdot \xi$ denotes the inner product on \mathbb{R}^n and $|\xi| = (\xi \cdot \xi)^{1/2}$. The function $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$ and it is $L^{(\alpha)}$ -harmonic on H. Furthermore, $W^{(\alpha)} \in C^{\infty}(H)$.

We also recall definitions of the fractional integral and differential operators for functions on $\mathbb{R}_+=(0,\infty)$ (for details, see [2]). For a real number $\kappa>0$, let

$$\mathcal{FC}^{-\kappa} := \{ \varphi \in C(\mathbb{R}_+) : \varphi(t) = O(t^{-\kappa'}) \ (t \to \infty) \text{ for some } \kappa' > \kappa \}.$$

For a function $\varphi \in \mathcal{FC}^{-\kappa}$, we can define the fractional integral $\mathcal{D}_t^{-\kappa}\varphi$ of φ by

(2.4)
$$\mathcal{D}_t^{-\kappa}\varphi(t) := \frac{1}{\Gamma(\kappa)} \int_0^\infty \tau^{\kappa-1} \varphi(\tau+t) d\tau, \quad t \in \mathbb{R}_+.$$

We put $\mathcal{FC}^0 := C(\mathbb{R}_+)$ and $\mathcal{D}_t^0 \varphi := \varphi$. Moreover, let

(2.5)
$$\mathcal{FC}^{\kappa} := \{ \varphi \; ; \; \partial_t^{\lceil \kappa \rceil} \varphi \in \mathcal{FC}^{-(\lceil \kappa \rceil - \kappa)} \},$$

where $\lceil \kappa \rceil$ is the smallest integer greater than or equal to κ . Then, we can also define the fractional derivative $\mathcal{D}_t^{\kappa} \varphi$ of $\varphi \in \mathcal{FC}^{\kappa}$ by

(2.6)
$$\mathcal{D}_{t}^{\kappa}\varphi(t) := \mathcal{D}_{t}^{-(\lceil \kappa \rceil - \kappa)} \left((-\partial_{t})^{\lceil \kappa \rceil} \varphi \right)(t), \quad t \in \mathbb{R}_{+}.$$

Clearly, when $\kappa \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, the operator \mathcal{D}_t^{κ} coincides with the ordinary differential operator $(-\partial_t)^{\kappa}$. For a real number κ , we may call both (2.4) and (2.6) the fractional derivatives

of φ with order κ . And, we call \mathcal{D}_t^{κ} the fractional differential operator with order κ . Here, we give some examples of fractional derivatives of elementary functions.

Example 2.1. Let $\kappa > 0$ and ν be real numbers. Then, we have the following.

$$(1) \mathcal{D}_t^{\nu} e^{-\kappa t} = \kappa^{\nu} e^{-\kappa t}.$$

(2) If
$$-\kappa < \nu$$
, then $\mathcal{D}_t^{\nu} t^{-\kappa} = \frac{\Gamma(\kappa + \nu)}{\Gamma(\kappa)} t^{-\kappa - \nu}$.

3. Littlewood-Paley functions of α -parabolic type

For a function $f \in L^2$, we denote by \hat{f} or $\mathcal{F}(f)$ the Fourier transform of f, that is,

$$\hat{f}(\xi) = \mathcal{F}(f)(\xi) = \int_{\mathbb{R}^n} f(y)e^{-2\pi i \xi \cdot y} dV_n(y), \quad \xi \in \mathbb{R}^n.$$

Let $n \geq 1$ and $0 < \alpha \leq 1$ be fixed. For $\gamma \in \mathbb{N}_0^n$ and $1 \leq p \leq \infty$, define the interval $I(\gamma,p)$ by

$$I(\gamma, p) := \begin{cases} \{ \nu \in \mathbb{R} : \nu > -(n/2\alpha)(1/p) - |\gamma|/2\alpha \} & (p \neq \infty) \\ \{ \nu \in \mathbb{R} : \nu > -|\gamma|/2\alpha \} \cup \{0\} & (p = \infty). \end{cases}$$

LEMMA 3.1. ([3, Theorem 3.4]) Let $0 < \alpha \le 1$, $1 \le p \le \infty$, and $\gamma \in \mathbb{N}_0^n$. If $f \in L^p$ and $\nu \in I(\gamma, p)$, then the derivative $\mathcal{D}_t^{\nu} \partial_x^{\gamma} \mathcal{H}_f^{(\alpha)}(x, t)$ is well defined, and

$$\mathcal{D}_t^{\nu} \partial_x^{\gamma} \mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} \mathcal{D}_t^{\nu} \partial_x^{\gamma} W^{(\alpha)}(x-y,t) f(y) dV_n(y).$$

Furthermore, there exists a constant $C = C(n, \alpha, p, \gamma, \nu) > 0$ such that

$$|\mathcal{D}_t^{\nu} \partial_x^{\gamma} \mathcal{H}_f^{(\alpha)}(x,t)| \le C t^{-(n/2\alpha)(1/p) - |\gamma|/2\alpha - \nu} ||f||_{L^p}$$

for all $(x,t) \in H$.

We give properties of fractional derivatives of $L^{(\alpha)}$ -harmonic extensions.

LEMMA 3.2. Let $0 < \alpha \le 1$ and $f \in L^2$. Then the following statements hold:

(1) For a real number $\nu > -\frac{n}{2\alpha}$,

$$\mathcal{D}_t^{\nu} W^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} |2\pi\xi|^{2\alpha\nu} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} \, dV_n(\xi).$$

Furthermore, for integers $1 \le j \le n$ and $\ell \in \mathbb{N}_0$,

$$\partial_j^{\ell} W^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi).$$

(2) For a real number $\nu > -\frac{n}{4\alpha}$,

$$\mathcal{D}_t^{\nu} \mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} |2\pi\xi|^{2\alpha\nu} \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi).$$

Furthermore, for integers $1 \le j \le n$ and $\ell \in \mathbb{N}_0$,

$$\partial_j^{\ell} \mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi).$$

PROOF. (1) Since $\nu > -\frac{n}{2\alpha}$, we have

$$\int_0^\infty \int_{\mathbb{R}^n} \tau^{\lceil \nu \rceil - \nu - 1} |2\pi \xi|^{2\alpha \lceil \nu \rceil} e^{-(\tau + t)|2\pi \xi|^{2\alpha}} dV_n(\xi) d\tau < \infty.$$

Differentiating through the integral (2.2) with respect to t, the Fubini theorem and Example 2.1 (1) imply that

$$\mathcal{D}_{t}^{\nu}W^{(\alpha)}(x,t) = \frac{1}{\Gamma(\lceil\nu\rceil - \nu)} \int_{0}^{\infty} \tau^{\lceil\nu\rceil - \nu - 1} \int_{\mathbb{R}^{n}} \mathcal{D}_{t}^{\lceil\nu\rceil} e^{-(\tau + t)|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_{n}(\xi) d\tau$$

$$= \int_{\mathbb{R}^{n}} \left(\frac{1}{\Gamma(\lceil\nu\rceil - \nu)} \int_{0}^{\infty} \tau^{\lceil\nu\rceil - \nu - 1} \mathcal{D}_{t}^{\lceil\nu\rceil} e^{-(\tau + t)|2\pi\xi|^{2\alpha}} d\tau \right) e^{2\pi i x \cdot \xi} dV_{n}(\xi)$$

$$= \int_{\mathbb{R}^{n}} \left(\mathcal{D}_{t}^{\nu} e^{-t|2\pi\xi|^{2\alpha}} \right) e^{2\pi i x \cdot \xi} d\tau dV_{n}(\xi)$$

$$= \int_{\mathbb{R}^{n}} |2\pi\xi|^{2\alpha\nu} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_{n}(\xi).$$

Furthermore, differentiating through the integral (2.2) with respect to x, we have

$$\partial_j^{\ell} W^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi).$$

(2) By Lemma 3.1 and Lemma 3.2 (1), we have

$$\begin{split} \mathcal{D}_{t}^{\nu}\mathcal{H}_{f}^{(\alpha)}(x,t) &= \int_{\mathbb{R}^{n}} \mathcal{D}_{t}^{\nu}W^{(\alpha)}(x-y,t)f(y)dV_{n}(y) \\ &= \int_{\mathbb{R}^{n}} f(y) \int_{\mathbb{R}^{n}} |2\pi\xi|^{2\alpha\nu} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i(x-y)\cdot\xi} \ dV_{n}(\xi) \ dV_{n}(y) \\ &= \int_{\mathbb{R}^{n}} |2\pi\xi|^{2\alpha\nu} \left(\int_{\mathbb{R}^{n}} f(y)e^{-2\pi iy\cdot\xi} \ dV_{n}(y) \right) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi ix\cdot\xi} \ dV_{n}(\xi) \\ &= \int_{\mathbb{R}^{n}} |2\pi\xi|^{2\alpha\nu} \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi ix\cdot\xi} \ dV_{n}(\xi). \end{split}$$

Furthermore, we have

$$\partial_j^{\ell} \mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} \partial_j^{\ell} W^{(\alpha)}(x-y,t) f(y) dV_n(y)$$

$$\begin{split} &= \int_{\mathbb{R}^n} f(y) \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i (x-y)\cdot\xi} \ dV_n(\xi) \ dV_n(y) \\ &= \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} \left(\int_{\mathbb{R}^n} f(y) e^{-2\pi i y\cdot\xi} \ dV_n(y) \right) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x\cdot\xi} \ dV_n(\xi) \\ &= \int_{\mathbb{R}^n} (2\pi i \xi_j)^{\ell} \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x\cdot\xi} \ dV_n(\xi). \end{split}$$

This completes the proof.

We give identities of Littlewood-Paley type for $L^{(\alpha)}$ -harmonic extensions.

THEOREM 3.3. Let $0 < \alpha \le 1$ and $f \in L^2$. Then the following identities hold:

(3.1)
$$\int_0^\infty \int_{\mathbb{R}^n} t^{\frac{1}{\alpha}-1} |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) dt = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2$$

(3.2)
$$\int_0^\infty \int_{\mathbb{R}^n} t^{\frac{1}{\alpha}-1} |\nabla_x \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) \ dt = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2.$$

PROOF. We show the identity (3.1). By Lemma 3.2 (2), we have

$$\mathcal{D}_{t}^{\frac{1}{2\alpha}} \mathcal{H}_{f}^{(\alpha)}(x,t) = \int_{\mathbb{R}^{n}} |2\pi\xi| \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_{n}(\xi) = \mathcal{F}^{-1}(\varphi_{t})(x),$$

where $\varphi_t(\xi) = |2\pi\xi| \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}}$. Therefore, we obtain

$$\begin{split} & \int_0^\infty \!\! \int_{\mathbb{R}^n} t^{\frac{1}{\alpha}-1} |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) \; dt = \int_0^\infty \!\! t^{\frac{1}{\alpha}-1} \int_{\mathbb{R}^n} |\mathcal{F}^{-1}(\varphi_t)(x)|^2 dV_n(x) \; dt \\ & = \int_0^\infty \!\! t^{\frac{1}{\alpha}-1} \int_{\mathbb{R}^n} |\varphi_t(\xi)|^2 dV_n(\xi) \; dt = \int_0^\infty \!\! t^{\frac{1}{\alpha}-1} \int_{\mathbb{R}^n} |2\pi\xi|^2 |\hat{f}(\xi)|^2 e^{-2t|2\pi\xi|^{2\alpha}} dV_n(\xi) \; dt \\ & = \int_{\mathbb{R}^n} |2\pi\xi|^2 |\hat{f}(\xi)|^2 \int_0^\infty t^{\frac{1}{\alpha}-1} e^{-2t|2\pi\xi|^{2\alpha}} dt \; dV_n(\xi) = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) \int_{\mathbb{R}^n} |\hat{f}(\xi)|^2 dV_n(\xi). \end{split}$$

We show the identity (3.2). By Lemma 3.2 (2), for $1 \le j \le n$, we have

$$\partial_j \mathcal{H}_f^{(\alpha)}(x,t) = \int_{\mathbb{R}^n} (2\pi i \xi_j) \hat{f}(\xi) e^{-t|2\pi\xi|^{2\alpha}} e^{2\pi i x \cdot \xi} dV_n(\xi) = \mathcal{F}^{-1}(\psi_{t,j})(x),$$

where $\psi_{t,j}(\xi)=(2\pi i \xi_j)\hat{f}(\xi)e^{-t|2\pi\xi|^{2\alpha}}.$ Therefore, we obtain

$$\int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{\frac{1}{\alpha}-1} |\nabla_{x} \mathcal{H}_{f}^{(\alpha)}(x,t)|^{2} dV_{n}(x) dt = \int_{0}^{\infty} t^{\frac{1}{\alpha}-1} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} |\mathcal{F}^{-1}(\psi_{t,j})(x)|^{2} dV_{n}(x) dt$$

$$= \int_{0}^{\infty} t^{\frac{1}{\alpha}-1} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} |\psi_{t,j}(\xi)|^{2} dV_{n}(\xi) dt = \int_{0}^{\infty} t^{\frac{1}{\alpha}-1} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} |2\pi i \xi_{j}|^{2} |\hat{f}(\xi)|^{2} e^{-2t|2\pi\xi|^{2\alpha}} dV_{n}(\xi) dt$$

$$= \int_0^\infty t^{\frac{1}{\alpha}-1} \int_{\mathbb{R}^n} |2\pi\xi|^2 |\hat{f}(\xi)|^2 e^{-2t|2\pi\xi|^{2\alpha}} dV_n(\xi) \ dt = 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) \int_{\mathbb{R}^n} |\hat{f}(\xi)|^2 dV_n(\xi).$$

This completes the proof.

4. Lusin functions of α -parabolic type

We recall the definitions of Lusin functions for $L^{(\alpha)}$ -harmonic extensions. For $\xi \in \mathbb{R}^n$ and $\rho > 0$, let

$$C_{\rho}^{(\alpha)}(\xi) := \{(x,t) \in H : |x - \xi|^{2\alpha} \le \rho^{-1}t\}.$$

Lusin functions for $L^{(\alpha)}$ -harmonic extensions are defined by

$$\mathcal{S}_{f,t}^{(\alpha)}(\xi) = \left(\iint_{C_{\rho}^{(\alpha)}(\xi)} t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) dt \right)^{1/2}$$

and

$$\mathcal{S}_{f,x}^{(\alpha)}(\xi) = \left(\iint_{C_{\rho}^{(\alpha)}(\xi)} t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} |\nabla_x \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) dt \right)^{1/2}.$$

We give identities of Lusin type for $L^{(\alpha)}$ -harmonic extensions.

THEOREM 4.1. Let $0 < \alpha \le 1$ and $f \in L^2$. Furthermore, let d_n be the volume of the unit ball of \mathbb{R}^n . Then the following identities hold:

(4.3)
$$\int_{\mathbb{R}^n} |\mathcal{S}_{f,t}^{(\alpha)}(\xi)|^2 dV_n(\xi) = d_n \rho^{-\frac{n}{2\alpha}} 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2$$

(4.4)
$$\int_{\mathbb{R}^n} |\mathcal{S}_{f,x}^{(\alpha)}(\xi)|^2 dV_n(\xi) = d_n \rho^{-\frac{n}{2\alpha}} 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^2}^2.$$

PROOF. We show the identity (4.3). Let $\Phi_{\xi}(x,t)$ be the characteristic function of the set $C_{\rho}^{(\alpha)}(\xi)$. The Fubini theorem implies that

$$\int_{\mathbb{R}^n} |\mathcal{S}_{f,t}^{(\alpha)}(\xi)|^2 dV_n(\xi)$$

$$= \int_{\mathbb{R}^n} \left(\int_0^\infty \int_{\mathbb{R}^n} \Phi_{\xi}(x,t) \, t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) \, dt \right) dV_n(\xi)$$

$$= \int_0^\infty \int_{\mathbb{R}^n} t^{\frac{1}{\alpha} - 1 - \frac{n}{2\alpha}} \left(\int_{\mathbb{R}^n} \Phi_x(\xi,t) \, dV_n(\xi) \right) |\mathcal{D}_t^{\frac{1}{2\alpha}} \mathcal{H}_f^{(\alpha)}(x,t)|^2 dV_n(x) \, dt.$$

Since

$$\int_{\mathbb{R}^n} \Phi_x(\xi, t) \, dV_n(\xi) = V_n(C_{\rho}^{(\alpha)}(x)) = V_n(C_{\rho}^{(\alpha)}(0)) = d_n \rho^{-\frac{n}{2\alpha}} t^{\frac{n}{2\alpha}},$$

Theorem 3.3 implies that

$$\int_{\mathbb{R}^{n}} |\mathcal{S}_{f,t}^{(\alpha)}(\xi)|^{2} dV_{n}(\xi) = d_{n} \rho^{-\frac{n}{2\alpha}} \int_{0}^{\infty} \int_{\mathbb{R}^{n}} t^{\frac{1}{\alpha} - 1} |\mathcal{D}_{t}^{\frac{1}{2\alpha}} \mathcal{H}_{f}^{(\alpha)}(x,t)|^{2} dV_{n}(x) dt
= d_{n} \rho^{-\frac{n}{2\alpha}} 2^{-\frac{1}{\alpha}} \Gamma(\alpha^{-1}) ||f||_{L^{2}}^{2}.$$

The proof of the identity (4.4) is similar. This completes the proof.

References

- [1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, second edition, Springer-Verlag, New York, 2001.
- [2] Y. Hishikawa, Fractional calculus on parabolic Bergman spaces, Hiroshima Math. J. **38**(2008), 471–488.
- [3] Y. Hishikawa, M. Nishio, and M. Yamada, Fractional calculus and $L^{(\alpha)}$ -conjugates on parabolic Hardy spaces, Scientiae Mathematicae Japonicae, 77(2014), 371–391.
- [4] Y. Hishikawa, K. Saeki, and M. Yamada, The $L^{(\alpha)}$ -harmonic extensions and their properties, Sci. Rep. Fac. Educ. Gifu Univ. **35**(2011), 1–10.
- [5] M. Nishio, K. Shimomura and N. Suzuki, α -parabolic Bergman spaces, Osaka J. Math. **42**(2005), 133–162.
- [6] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. **88**(1958), 430–466.
- [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J. 1970.

Yôsuke Hishikawa

Department of Mathematics, Faculty of Education, Gifu University Yanagido 1–1, Gifu 501–1193, Japan yhishik@gifu-u.ac.jp

and

Masahiro Yamada Department of Mathematics, Faculty of Education, Gifu University Yanagido 1–1, Gifu 501–1193, Japan yamada33@gifu-u.ac.jp