Boundary behavior of $L^{(\alpha)}$－harmonic extensions of measures

Yôsuke Hishikawa and Masahiro Yamada

Abstract

For $0<\alpha \leq 1$ ，we consider the parabolic operator $L^{(\alpha)}=\partial / \partial t+\left(-\Delta_{x}\right)^{\alpha}$ on the upper half－space of the Euclidean space \mathbb{R}^{n+1} ．In this paper，we study $L^{(\alpha)}$－harmonic extensions of finite signed Borel measures on \mathbb{R}^{n} ，which are defined by the convolutions of the fundamental solution of $L^{(\alpha)}$ ．We obtain a result of classical Fatou type for $L^{(\alpha)}$ ． harmonic extensions of measures．

1．Introduction

Let $n \geq 1$ and let H be the upper half－space of the $(n+1)$－dimensional Euclidean space， that is，$H=\left\{X=(x, t) \in \mathbb{R}^{n+1}: x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t>0\right\}$ ．For $0<\alpha \leq 1$ ，the parabolic operator $L^{(\alpha)}$ is defined by

$$
\begin{equation*}
L^{(\alpha)}:=\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}, \tag{1.1}
\end{equation*}
$$

where $\partial_{t}=\partial / \partial t, \partial_{j}=\partial / \partial x_{j}$ ，and $\Delta_{x}=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$ ．Let $C(H)$ be the set of all real－valued continuous functions on H ．A function $u \in C(H)$ is said to be $L^{(\alpha)}$－harmonic if $L^{(\alpha)} u=0$ in the sense of distributions（for details，see Section 2）．In this paper，we study boundary behavior of $L^{(\alpha)}$－harmonic extensions of finite signed Borel measures on \mathbb{R}^{n} ，which are defined by the convolutions of the fundamental solution of $L^{(\alpha)}$ ．The classical Fatou theorem is the following； bounded harmonic functions in the open unit disk have nontangential limits almost everywhere on the unit circle．We obtain a result of classical Fatou type for $L^{(\alpha)}$－harmonic extensions of measures．

To state our main result，we give some definitions．We denote by $W^{(\alpha)}$ the fundamental solution of $L^{(\alpha)}$（see Section 2 for the definition）．Let $M:=M\left(\mathbb{R}^{n}\right)$ be the set of all signed Borel measures on \mathbb{R}^{n}（thus necessarily，$|\mu|\left(\mathbb{R}^{n}\right)<\infty$ for all $\mu \in M$ ）．We define an $L^{(\alpha)}$－ harmonic extension $\mathcal{H}_{\mu}^{(\alpha)}$ of $\mu \in M$ by

$$
\begin{equation*}
\mathcal{H}_{\mu}^{(\alpha)}(x, t)=\int_{\mathbb{R}^{n}} W^{(\alpha)}(x-y, t) d \mu(y), \quad(x, t) \in H \tag{1.2}
\end{equation*}
$$

It is shown that the function $\mathcal{H}_{\mu}^{(\alpha)}$ is $L^{(\alpha)}$－harmonic on H（see［3，Theorem 5．2］）．It is well known that when $\alpha=1 / 2$ ，the fundamental solution $W^{(1 / 2)}$ coincides with the Poisson kernel

[^0]for H (see [4, Section 2]). Therefore, the function $\mathcal{H}_{\mu}^{(1 / 2)}$ is the usual harmonic extensions of μ. Let $d V_{n}$ be the Lebesgue measure on \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$ and $\rho>0$, let
$$
C_{\rho}^{(\alpha)}(x):=\left\{(y, s) \in H:|y-x|^{2 \alpha} \leq \rho^{-1} s\right\} .
$$

The following Fatou theorem is well known([1, Corollary 6.44]).
The Fatou theorem. ([1, Corollary 6.44]) Let $\mu \in M$. Suppose $d \mu=f d V_{n}+d \mu_{s}$ is the Lebesgue decomposition of μ with respect to V_{n}. If $\rho>0$, then

$$
\lim _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{P}^{C / 2(2)}(x)}} \mathcal{H}_{\mu}^{(1 / 2)}(y, s)=f(x)
$$

at almost every $x \in \mathbb{R}^{n}$.
The Fatou theorem shows that the harmonic extension of the measure $d \mu=f d V_{n}+d \mu_{s}$ has nontangential limit $f(x)$ at almost every $x \in \mathbb{R}^{n}$. In this paper, we show the following theorem, which is a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ for all $0<\alpha \leq 1$.

The main theorem. (Theorem 4.4 of this paper) Let $0<\alpha \leq 1$ and $\mu \in M$. Suppose $d \mu=f d V_{n}+d \mu_{s}$ is the Lebesgue decomposition of μ with respect to V_{n}. If $\rho>0$, then

$$
\lim _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{P}^{(\alpha)}(x)}} \mathcal{H}_{\mu}^{(\alpha)}(y, s)=f(x)
$$

at almost every $x \in \mathbb{R}^{n}$.
We describe the construction of this paper. In Section 2, we recall definitions of the $L^{(\alpha)}{ }_{-}$ harmonic functions and the fundamental solution of $L^{(\alpha)}$. Furthermore, some lemmas are presented. In Section 3, we present basic properties of the parabolic Hardy spaces. In Section 4, we study the boundary behavior of $\mathcal{H}_{\mu}^{(\alpha)}$ with $\mu \in M$, and we show a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ for all $0<\alpha \leq 1$.

Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall definitions of the $L^{(\alpha)}$-harmonic functions and the fundamental solution of $L^{(\alpha)}$ (for details, see [4]). We begin with describing the operator $\left(-\Delta_{x}\right)^{\alpha}$. Since the case $\alpha=1$ is trivial, we only describe the case $0<\alpha<1$. Let $C^{\infty}(H) \subset C(H)$ be the set of all infinitely differentiable functions on H and let $C_{c}^{\infty}(H) \subset C^{\infty}(H)$ be the set of all functions in $C^{\infty}(H)$ with compact support. Then, $\left(-\Delta_{x}\right)^{\alpha}$ is the convolution operator defined by

$$
\begin{equation*}
\left(-\Delta_{x}\right)^{\alpha} \psi(x, t):=-C_{n, \alpha} \lim _{\varepsilon \rightarrow+0} \int_{|y|>\varepsilon} \frac{\psi(x+y, t)-\psi(x, t)}{|y|^{n+2 \alpha}} d V_{n}(y) \tag{2.1}
\end{equation*}
$$

for all $\psi \in C_{c}^{\infty}(H)$ and $(x, t) \in H$, where $C_{n, \alpha}=-4^{\alpha} \pi^{-n / 2} \Gamma((n+2 \alpha) / 2) / \Gamma(-\alpha)>0$ and Γ is the gamma function. Let $\widetilde{L}^{(\alpha)}:=-\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}$ be the adjoint operator of $L^{(\alpha)}$. Then, a function $u \in C(H)$ is said to be $L^{(\alpha)}$-harmonic if u satisfies $L^{(\alpha)} u=0$ in the sense of distributions, that is,

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|u(x, t) \widetilde{L}^{(\alpha)} \psi(x, t)\right| d V_{n}(x) d t<\infty \quad \text { and } \quad \int_{0}^{\infty} \int_{\mathbb{R}^{n}} u(x, t) \widetilde{L}^{(\alpha)} \psi(x, t) d V_{n}(x) d t=0
$$

for all $\psi \in C_{c}^{\infty}(H)$.
We present the explicit definition of the fundamental solution of $L^{(\alpha)}$. For $x \in \mathbb{R}^{n}$, let

$$
W^{(\alpha)}(x, t):= \begin{cases}\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \exp \left(-t|\xi|^{2 \alpha}+i x \cdot \xi\right) d V_{n}(\xi) & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

where $x \cdot \xi$ denotes the inner product on \mathbb{R}^{n} and $|\xi|=(\xi \cdot \xi)^{1 / 2}$. The function $W^{(\alpha)}$ is called the fundamental solution of $L^{(\alpha)}$. We also describe basic properties of $W^{(\alpha)}$. It is well known that

$$
\begin{equation*}
W^{(\alpha)}(x, t)>0, \quad(x, t) \in H \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} W^{(\alpha)}(x, t) d V_{n}(x)=1, \quad 0<t<\infty \tag{2.3}
\end{equation*}
$$

We also remark that $W^{(\alpha)}$ is $L^{(\alpha)}$-harmonic on H and $W^{(\alpha)} \in C^{\infty}(H)$. The following estimate is [4, Lemma 3.1]: there exists a constant $C=C(n, \alpha)>0$ such that

$$
\begin{equation*}
W^{(\alpha)}(x, t) \leq C \frac{t}{\left(t+|x|^{2 \alpha}\right)^{n / 2 \alpha+1}} \tag{2.4}
\end{equation*}
$$

for all $(x, t) \in H$.
In case $\alpha=1 / 2$, the function $W^{(1 / 2)}$ is the Poisson kernel, that is,

$$
W^{(1 / 2)}(x, t)= \begin{cases}\frac{\Gamma((n+1) / 2)}{\pi^{(n+1) / 2}} \frac{t}{\left(t^{2}+|x|^{2}\right)^{(n+1) / 2}} & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

In case $\alpha=1$, the function $W^{(1)}$ is the Gauss kernel, that is,

$$
W^{(1)}(x, t)= \begin{cases}(4 \pi t)^{-n / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right) & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

In other cases, simple explicit expressions for $W^{(\alpha)}$ are not known.

3. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [4, Remark 5.7]. Some properties of their spaces have been studied in [2]. In this section, we present basic properties of the parabolic Hardy spaces. We begin with recalling definition of the parabolic Hardy spaces. For $0<\alpha \leq 1$ and $1 \leq p \leq \infty$, the α-parabolic Hardy space $\boldsymbol{h}_{\alpha}^{p}$ is the set of all $L^{(\alpha)}$-harmonic functions u on H with

$$
\|u\|_{h_{\alpha}^{p}}:=\sup _{t>0}\|u(\cdot, t)\|_{L^{p}}=\sup _{t>0}\left(\int_{\mathbb{R}^{n}}|u(x, t)|^{p} d V_{n}(x)\right)^{1 / p}<\infty .
$$

We remark that by Lemma 2.2 of [2] (see Section 4 of [2])

$$
\|u\|_{h_{\alpha}^{p}}=\lim _{t \rightarrow 0}\|u(\cdot, t)\|_{L^{p}}
$$

for all $1 \leq p \leq \infty$ and $u \in \boldsymbol{h}_{\alpha}^{p}$.
For $1 \leq p \leq \infty$, the Lebesgue space $L^{p}:=L^{p}\left(\mathbb{R}^{n}, d V_{n}\right)$ is defined to be the Banach space of Lebesgue measurable (real-valued) functions on \mathbb{R}^{n} with norm $\|\cdot\|_{L^{p}}$. If $d \mu=f d V_{n}$ with $f \in L^{p}$, we will write $\mathcal{H}_{\mu}^{(\alpha)}=\mathcal{H}_{f}^{(\alpha)}$, and we say that $\mathcal{H}_{f}^{(\alpha)}$ is the $L^{(\alpha)}$-harmonic extension of the funtion f. We present the following lemma, which is a result of [2].

Lemma 3.1. ([2, Theorem 4.1]) Let $0<\alpha \leq 1$. Then, the following statements hold:
(1) For $1<p \leq \infty$, the mapping $f \mapsto \mathcal{H}_{f}^{(\alpha)}$ is a linear isometry of L^{p} onto $\boldsymbol{h}_{\alpha}^{p}$.
(2) The mapping $\mu \mapsto \mathcal{H}_{\mu}^{(\alpha)}$ is a linear isometry of M onto $\boldsymbol{h}_{\alpha}^{1}$.

We also describe the definition of the α-parabolic maximal function, which is introduced in [2]. We recall the definition of $C_{\rho}^{(\alpha)}(x)$. For $x \in \mathbb{R}^{n}$ and $\rho>0$, let

$$
C_{\rho}^{(\alpha)}(x):=\left\{(y, s) \in H:|y-x|^{2 \alpha} \leq \rho^{-1} s\right\} .
$$

The α-parabolic maximal function $\mathcal{N}_{\rho}^{(\alpha)}[u]$ of a function u on H is defined by

$$
\mathcal{N}_{\rho}^{(\alpha)}[u](x):=\sup \left\{|u(y, s)|:(y, s) \in C_{\rho}^{(\alpha)}(x)\right\}, \quad x \in \mathbb{R}^{n}
$$

Clearly, for a function u on H, we have

$$
\begin{equation*}
\|u\|_{h_{\alpha}^{p}} \leq\left\|\mathcal{N}_{\rho}^{(\alpha)}[u]\right\|_{L^{p}} \tag{3.1}
\end{equation*}
$$

for all $0<\alpha \leq 1,1 \leq p \leq \infty$, and $\rho>0$. The following result is Theorem 7.3 of [2].
Lemma 3.2. ([2, Theorem 7.3]) Let $0<\alpha \leq 1$ and $\rho>0$. Then, the following statements hold:
(1) If $1<p \leq \infty$, then there exists a constant $C=C(n, \alpha, p, \rho)>0$ such that

$$
\|u\|_{\boldsymbol{h}_{\alpha}^{p}} \leq\left\|\mathcal{N}_{\rho}^{(\alpha)}[u]\right\|_{L^{p}} \leq C\|u\|_{\boldsymbol{h}_{\alpha}^{p}}
$$

for all $L^{(\alpha)}$-harmonic functions u on H.
(2) If $p=1$, then there exists a constant $C=C(n, \alpha, \rho)>0$ such that

$$
V_{n}\left(\left\{x \in \mathbb{R}^{n}: \mathcal{N}_{\rho}^{(\alpha)}[u](x)>\lambda\right\}\right) \leq \frac{C}{\lambda}\|u\|_{\boldsymbol{h}_{\alpha}^{1}}
$$

for all $\lambda>0$ and $L^{(\alpha)}$-harmonic functions u on H.

4. The boundary behavior of the $L^{(\alpha)}$-harmonic extensions

In this section, we study the boundary behavior of $\mathcal{H}_{\mu}^{(\alpha)}$ with $\mu \in M$, and we show a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ for all $0<\alpha \leq 1$. First, we describe a result concerning the boundary behavior of $\mathcal{H}_{f}^{(\alpha)}$ with $f \in L^{p}$, which is obtained in [5]. For $1 \leq p \leq \infty$ and $f \in L^{p}$, let $\mathcal{S}(f)$ be the set of all points $x \in \mathbb{R}^{n}$ which satisfy the following condition; for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|\int_{B(y, r)}(f(z)-f(x)) d V_{n}(z)\right|<\varepsilon(|y-x|+r)^{n}
$$

for all $y \in \mathbb{R}^{n}$ with $|y-x|<\delta$ and $r<\delta$, where $B(y, r)$ is the Euclidean ball of radius r and center at y. We give the following remark.

REmARK 4.1. For $1 \leq p \leq \infty$ and $f \in L^{p}$, every Lebesgue point of f belongs to $\mathcal{S}(f)$. In fact, suppose that $x \in \mathbb{R}^{n}$ is a Lebesgue point of f, and let $\varepsilon>0$. Then, there exists $\delta>0$ such that

$$
\int_{B(x, \eta)}|f(z)-f(x)| d V_{n}(z)<\varepsilon \eta^{n}
$$

for all $\eta<2 \delta$. Thus, if $|y-x|<\delta$ and $r<\delta$, then $\eta:=|y-x|+r<2 \delta$, so we have

$$
\begin{aligned}
& \left|\int_{B(y, r)}(f(z)-f(x)) d V_{n}(z)\right| \leq \int_{B(y, r)}|f(z)-f(x)| d V_{n}(z) \\
& \leq \int_{B(x,|y-x|+r)}|f(z)-f(x)| d V_{n}(z)<\varepsilon(|y-x|+r)^{n} .
\end{aligned}
$$

Therefore, x belongs to $\mathcal{S}(f)$.
We describe the main theorem in [5], which is concerned with the boundary behavior of $\mathcal{H}_{f}^{(\alpha)}$ with $f \in L^{p}$ (actually the result in [5] is more general).

Lemma 4.2. ([5, The main theorem]) Let $0<\alpha \leq 1,1 \leq p \leq \infty$, and $f \in L^{p}$. If $\rho>0$, then

$$
\lim _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{\rho}^{(\alpha)}(x)}} \mathcal{H}_{f}^{(\alpha)}(y, s)=f(x)
$$

for all $x \in \mathcal{S}(f)$.
By Remark 4.1 and Lemma 4.2, we have the following corollary, which is a result of Fatou type.

Corollary 4.3. Let $0<\alpha \leq 1,1 \leq p \leq \infty$, and $f \in L^{p}$. If $\rho>0$, then

$$
\lim _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{p}^{(\alpha)}(x)}} \mathcal{H}_{f}^{(\alpha)}(y, s)=f(x)
$$

at almost every $x \in \mathbb{R}^{n}$.
For $\mu \in M$, we put

$$
L_{\mu}(x):=\limsup _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{p}^{(\alpha)}(x)}} \mathcal{H}_{\mu}^{(\alpha)}(y, s), \quad x \in \mathbb{R}^{n} .
$$

We show the following theorem, which is a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ with $\mu \in M$.
Theorem 4.4. Let $0<\alpha \leq 1$ and $\mu \in M$. Suppose $d \mu=f d V_{n}+d \mu_{s}$ is the Lebesgue decomposition of μ with respect to V_{n}. If $\rho>0$, then

$$
\lim _{\substack{(y, s) \rightarrow(x, 0) \\(y, s) \in C_{P}^{(\alpha)}(x)}} \mathcal{H}_{\mu}^{(\alpha)}(y, s)=f(x)
$$

at almost every $x \in \mathbb{R}^{n}$.
Proof. By Corollary 4.3 and the Jordan decomposition, it suffices to show that if $\mu \in M$ is positive and $\mu \perp V_{n}$ then $L_{\mu}(x)=0$ at almost every $x \in \mathbb{R}^{n}$. In particular, we shall show that $V_{n}\left(\left\{L_{\mu}>2 \lambda\right\}\right)=0$ for each $\lambda>0$. Thus, suppose $\mu \in M$ is positive, $\mu \perp V_{n}$, and $\lambda>0$. Let $\varepsilon>0$. Then, since μ is regular, there exists an open set $E \subset \mathbb{R}^{n}$ such that $\mu(E)<\varepsilon$ and $V_{n}\left(\mathbb{R}^{n} \backslash E\right)=0$. Put $d \omega:=\mathcal{X}_{E} d \mu$ and $d \sigma:=\mathcal{X}_{\mathbb{R}^{n} \backslash E} d \mu$. Since

$$
\left\{L_{\mu}>2 \lambda\right\} \subset\left\{L_{\omega}>\lambda\right\} \cup\left\{L_{\sigma}>\lambda\right\}
$$

we shall give estimates of $V_{n}\left(\left\{L_{\omega}>\lambda\right\}\right)$ and $V_{n}\left(\left\{L_{\sigma}>\lambda\right\}\right)$.
First, we shall estimate $V_{n}\left(\left\{L_{\omega}>\lambda\right\}\right)$. Put $u=\mathcal{H}_{\omega}^{(\alpha)}$. Then, by the definition, we have $L_{\omega}(x) \leq \mathcal{N}_{\rho}^{(\alpha)}[u](x)$ for all $x \in \mathbb{R}^{n}$. Thus, Lemma 3.2 (2) and Theorem 3.1 (2) imply

$$
V_{n}\left(\left\{L_{\omega}>\lambda\right\}\right) \leq V_{n}\left(\left\{\mathcal{N}_{\rho}^{(\alpha)}[u]>\lambda\right\}\right) \leq C \lambda^{-1}\|u\|_{\boldsymbol{h}_{\alpha}^{1}}=C \lambda^{-1}\|\omega\| .
$$

Since $\mu(E)<\varepsilon$ and $d \omega=\mathcal{X}_{E} d \mu$, we obtain $V_{n}\left(\left\{L_{\omega}>\lambda\right\}\right) \leq C \lambda^{-1} \varepsilon$.
Next, we show $V_{n}\left(\left\{L_{\sigma}>\lambda\right\}\right)=0$. First, we claim that

$$
\begin{equation*}
\lim _{(y, s) \rightarrow(x, 0)} \mathcal{H}_{\sigma}^{(\alpha)}(y, s)=0 \tag{4.1}
\end{equation*}
$$

for all $x \in E$. In fact, let $x \in E$ be fixed. Since E is an open set, there exists $\delta>0$ such that $B(x, 2 \delta) \subset E$. It is enough to consider the behavior of $\mathcal{H}_{\sigma}^{(\alpha)}(y, s)$ with (y, s) sufficiently near $(x, 0)$. Therefore, suppose $|x-y|<\delta$. Then, by (2.2) and (2.4), we have

$$
\begin{aligned}
\mathcal{H}_{\sigma}^{(\alpha)}(y, s) & \leq \int_{\mathbb{R}^{n} \backslash B(x, 2 \delta)} W^{(\alpha)}(y-z, s) d \mu(z) \leq C \int_{\mathbb{R}^{n} \backslash B(x, 2 \delta)} \frac{s}{\left(s+|y-z|^{2 \alpha}\right)^{n / 2 \alpha+1}} d \mu(z) \\
& \leq C \int_{\mathbb{R}^{n} \backslash B(x, 2 \delta)} \frac{s}{\left(|y-z|^{2 \alpha}\right)^{n / 2 \alpha+1}} d \mu(z) \leq C \frac{s}{\delta^{n+2 \alpha}}\|\mu\|,
\end{aligned}
$$

because $|y-z| \geq|z-x|-|x-y|>2 \delta-\delta=\delta$ for all $z \in \mathbb{R}^{n} \backslash B(x, 2 \delta)$. Hence, we obtain (4.1) for all $x \in E$. Since this implies $\left\{L_{\sigma}>\lambda\right\} \subset \mathbb{R}^{n} \backslash E$, we conclude $V_{n}\left(\left\{L_{\sigma}>\lambda\right\}\right) \leq$ $V_{n}\left(\mathbb{R}^{n} \backslash E\right)=0$.

By the above estimates, we have $V_{n}\left(\left\{L_{\mu}>2 \lambda\right\}\right) \leq C \lambda^{-1} \varepsilon$. Since ε is arbitrary, we obtain $V_{n}\left(\left\{L_{\mu}>2 \lambda\right\}\right)=0$. This completes the proof.

References

[1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, second edition, SpringerVerlag, New York, 2001.
[2] Y. Hishikawa, M. Nishio, and M. Yamada, Fractional calculus and $L^{(\alpha)}$-conjugates on parabolic Hardy spaces, Scientiae Mathematicae Japonicae, 77(2014), 371-391.
[3] Y. Hishikawa, K. Saeki, and M. Yamada, The $L^{(\alpha)}$-harmonic extensions and their properties, Sci. Rep. Fac. Educ. Gifu Univ. 35(2011), 1-10.
[4] M. Nishio, K. Shimomura and N. Suzuki, α-parabolic Bergman spaces, Osaka J. Math. 42(2005), 133-162.
[5] H. Nakagawa, A remark on the limits of nontangential type for generalized Poisson integrals, Int. J. Pure Appl. Math. 59(2010), 343-348.

Yôsuke Hishikawa
Department of Mathematics, Faculty of Education, Gifu University
Yanagido 1-1, Gifu 501-1193, Japan
yhishik@gifu-u.ac.jp
and
Masahiro Yamada
Department of Mathematics, Faculty of Education, Gifu University
Yanagido 1-1, Gifu 501-1193, Japan
yamada33@gifu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification：Primary 31A20；Secondary 31B25，35K05．
 Keywords and phrases：harmonic extension，boundary behavior，parabolic operator of fractional order
 This work was supported in part by Grant－in－Aid for Scientific Research（C）（No．16K05198），Japan Society for the Promotion of Science．

