I B FHE OIS (HAAREE) 55418, 31-37, 201743 H
Sci. Rep. Fac. Educ. Gifu Univ. (Nat. Sci.) 41, 31-37, March 2017

Boundary behavior of L(“-harmonic extensions of measures

Yosuke HISHIKAWA and Masahiro YAMADA

ABSTRACT. For0 < a < 1, we consider the parabolic operator L(®) = 9/0t +(—A,)®
on the upper half-space of the Euclidean space R"*. In this paper, we study L(®-harmonic
extensions of finite signed Borel measures on R™, which are defined by the convolutions
of the fundamental solution of L(®). We obtain a result of classical Fatou type for L(®)-
harmonic extensions of measures.

1. Introduction

Let n > 1 and let H be the upper half-space of the (n + 1)-dimensional Euclidean space,
thatis, H = {X = (z,t) € R"™ : 2z = (z,...,2,) € R", t > 0}. For0 < a < 1, the
parabolic operator L(®) is defined by

(1.1) L@ =0, + (—AL)%,

where 9, = 0/0t, 9; = 0/0z;j, and A, = 9} + - - - + 9. Let C(H) be the set of all real-valued
continuous functions on H. A function v € C(H) is said to be L(®-harmonic if L™y = 0 in
the sense of distributions (for details, see Section 2). In this paper, we study boundary behavior
of L(®)-harmonic extensions of finite signed Borel measures on R”, which are defined by the
convolutions of the fundamental solution of L(*). The classical Fatou theorem is the following;
bounded harmonic functions in the open unit disk have nontangential limits almost everywhere
on the unit circle. We obtain a result of classical Fatou type for L(®-harmonic extensions of
measures.

To state our main result, we give some definitions. We denote by W (® the fundamental
solution of L(® (see Section 2 for the definition). Let M := M(R") be the set of all signed
Borel measures on R” (thus necessarily, |p|(R") < oo for all u € M). We define an L(®-
harmonic extension H\ of i € M by

(1.2) H (z,1) = W (z —y, t)duly), (z,t) € H.

I
]Rn

It is shown that the function Hl(f‘) is L(®)-harmonic on H (see [3, Theorem 5.2]). It is well
known that when o = 1/2, the fundamental solution 1/ (1/?) coincides with the Poisson kernel
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for H (see [4, Section 2]). Therefore, the function Hf}/ ?) is the usual harmonic extensions of L.
Let dV,, be the Lebesgue measure on R". For x € R™ and p > 0, let

« o . 2« —1
() = {(g.s) € H : |y — 2 < pls}.
The following Fatou theorem is well known([1, Corollary 6.44]).

The Fatou theorem. ([1, Corollary 6.44]) Let i € M. Suppose dyp = fdV,, + dus is the
Lebesgue decomposition of . with respect to V,,. If p > 0, then
lim — HD(y,s) = f(x)

(4,5)—(2.0)
(w.)ecs/? (@)

at almost every x € R".

The Fatou theorem shows that the harmonic extension of the measure du = fdV,, + dyu has
nontangential limit f(x) at almost every x € R". In this paper, we show the following theorem,

which is a result of Fatou type for " forall 0 < o < 1.

The main theorem. (Theorem 4.4 of this paper) Let 0 < o < 1 and p € M. Suppose
dp = fdV,, + dus is the Lebesgue decomposition of |1 with respect to V. If p > 0, then
lim  H(y,s) = f(x)

(y,s)—(x,0)
(w,5)€Cs? ()

at almost every x € R".

We describe the construction of this paper. In Section 2, we recall definitions of the L(®)-
harmonic functions and the fundamental solution of L(*). Furthermore, some lemmas are pre-
sented. In Section 3, we present basic properties of the parabolic Hardy spaces. In Section 4,
we study the boundary behavior of Hff‘) with © € M, and we show a result of Fatou type for
HY forall 0 < o < 1.

Throughout this paper, C' will denote a positive constant whose value is not necessarily the
same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall definitions of the L(®-harmonic functions and the fundamental
solution of L(®) (for details, see [4]). We begin with describing the operator (—A, ). Since the
case o = 1 is trivial, we only describe the case 0 < o < 1. Let C*°(H) C C(H) be the set of
all infinitely differentiable functions on H and let C>°(H) C C*°(H) be the set of all functions
in C*°(H) with compact support. Then, (—A,)* is the convolution operator defined by

@Z)(I + y7t) B ’g/)(l',t)

|y |+

(2.1) (—A,)%Y(x,t) := —C), 4 lim

e——+0

dV, (y)

ly|>e
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for all v € C®°(H) and (z,t) € H, where Cp,, = —4°7"*T((n + 20)/2)/T(—a) > 0
and T is the gamma function. Let L :: —0; + (=A,)" be the adjoint operator of L(®)

Then, a function v € C(H) is said to be L(®)-harmonic if u satisfies L{®)u = 0 in the sense of
distributions, that is,

/OooRn\u(xt) Y(w,t)|dV,(x)dt < oo and // (2, ) L% (@, £)dV,y (x)dt = 0

forall ¢y € C*(H).
We present the explicit definition of the fundamental solution of L(®). For z € R™, let

#/}R exp(—t|¢* +ia- &) dV,(¢) (t>0)
’ (t <0),

W (z,t) :=

where 1 - £ denotes the inner product on R" and |¢| = (£ -€)'/2. The function W(®) is called the
fundamental solution of L(*). We also describe basic properties of W (). It is well known that

(2.2) W) () > 0, (z,t) € H
and
(2.3) / W) (z, )dV,(z) =1, 0<t<oo.

We also remark that W(®) is L(®-harmonic on H and W(®) € C>(H). The following estimate
is [4, Lemma 3.1]: there exists a constant C' = C'(n, &) > 0 such that

t
(t + |x|2a)n/2a+1

(2.4) W@z t) < C

forall (z,t) € H.
In case a = 1/2, the function W (1/2) is the Poisson kernel, that is,
I'((n+1)/2) ;
WD (g ) = (D2 (12 4 [z [2)(n+1)/2
0 (t <0).

(t >0)

In case o = 1, the function W) is the Gauss kernel, that is,

(4t) /2 exp(—%) (t>0)

0 (t <0).

W (z,t) =

In other cases, simple explicit expressions for W () are not known.
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3. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [4, Remark 5.7]. Some properties of their
spaces have been studied in [2]. In this section, we present basic properties of the parabolic
Hardy spaces. We begin with recalling definition of the parabolic Hardy spaces. For 0 < a <'1
and 1 < p < oo, the a-parabolic Hardy space h” is the set of all L(®-harmonic functions u on
H with

1/p
||u||hg:=supuu<~,t>um:sup( |u<x,t>rpdvn<x>) < o0,
t>0 t>0

R
We remark that by Lemma 2.2 of [2] (see Section 4 of [2])

[llng = T flu(- )] 2e
—0

foralll1 <p <ooandu € h?.
For 1 < p < oo, the Lebesgue space LP := LP(R™, dV,) is defined to be the Banach space
of Lebesgue measurable (real-valued) functions on R” with norm || - ||z». If du = fdV}, with

f € LP, we will write H") = H;a), and we say that cha) is the L(®)-harmonic extension of the
funtion f. We present the following lemma, which is a result of [2].

LEMMA 3.1. ([2, Theorem 4.1]) Let 0 < o < 1. Then, the following statements hold-
(1) For 1 < p < oo, the mapping f — cha) is a linear isometry of LP onto h?.
(2) The mapping 1 +— Hl(fé) is a linear isometry of M onto h.

We also describe the definition of the a-parabolic maximal function, which is introduced in
[2]. We recall the definition of C’,(,a) (x). Forz € R™ and p > 0, let

CS(x) = {(y,5) € H : [y — a** < p~'s}.
The a-parabolic maximal function N p(o‘) [u] of a function w on H is defined by
/\/p(o‘)[u}(x) = sup{|u(y, s): (y,s) € C’éa)(x)}, r e R
Clearly, for a function u on H, we have
(3.1 lullng, < NG [l 2o
forall0 < a < 1,1 < p < oo, and p > 0. The following result is Theorem 7.3 of [2].

LEMMA 3.2. ([2, Theorem 7.3]) Let 0 < o < 1 and p > 0. Then, the following statements
hold.

(D) If1 < p < o0, then there exists a constant C' = C(n, «, p, p) > 0 such that

lullng, < TNVl < Cllullng
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for all L\ -harmonic functions v on H.

(2) If p = 1, then there exists a constant C = C(n, «, p) > 0 such that
n . (a) C
Va{z € R* : NpPu(2) > A}) < lulln;

for all \ > 0 and L) -harmonic functions v on H.

4. The boundary behavior of the L(®)-harmonic extensions

In this section, we study the boundary behavior of Hl(f“) with o € M, and we show a result
of Fatou type for Hﬁa) for all 0 < a < 1. First, we describe a result concerning the boundary
behavior of H;O‘) with f € LP, which is obtained in [5]. For 1 < p < oo and f € L?, let S(f)
be the set of all points = € R™ which satisty the following condition; for any £ > 0 there exists
0 > 0 such that

‘/B( )(f(z) — f(@))dVi(2)| < e(ly — x| +7)"

forall y € R™ with |y — z| < 6 and r < §, where B(y, r) is the Euclidean ball of radius r and
center at y. We give the following remark.

REMARK 4.1. For 1 <p < oo and f € LP, every Lebesgue point of f belongs to S(f). In
fact, suppose that = € R" is a Lebesgue point of f, and let ¢ > 0. Then, there exists > 0 such
that

L(Jﬂd—ﬂwwnwkwﬁ

for all n < 26. Thus, if |y — x| < dand r < §, then n := |y — z| + r < 20, so we have

L(ﬁﬂ@—ﬂ@ﬂ%@)

< z) — f(x)|dV,, (2

_LmJﬂ) f(@)]dva(2)

s/ 1£(2) = F(2)]dVi(2) < e(|ly — x| + )",
B(z,ly—x|+r)

Therefore, = belongs to S(f).

We describe the main theorem in [5], which is concerned with the boundary behavior of
H}a) with f € L? (actually the result in [5] is more general).

LEMMA 4.2. ([5, The main theorem]) Let 0 < a < 1, 1 < p < oo, and f € LP. If p > 0,
then

lim  H(y,s) =
Shm (Y, s) = fl@)
w)ecs (@)
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Jorall x € S(f).
By Remark 4.1 and Lemma 4.2, we have the following corollary, which is a result of Fatou
type.

COROLLARY 4.3. Let0 < a<1,1<p<oc,and f € LP. If p > 0, then

lim  H(y,s) =
Sdm (s s) = fl@)
(w.9)€Cs™ ()

at almost every x € R".
For € M, we put

L,(z):= limsup Hff“)(y,s), z € R".
(5,9)—(2,0)
w9t (@)

We show the following theorem, which is a result of Fatou type for Hffy) with € M.

THEOREM 4.4. Let 0 < a < 1l and p € M. Suppose du = fdV, + dus is the Lebesgue
decomposition of . with respect to V,,. If p > 0, then

lim  H(y,s) = f(z)

(4,5)—(@,0)
(w.9)ecs (@)

at almost every x € R".

PROOF. By Corollary 4.3 and the Jordan decomposition, it suffices to show that if u € M
is positive and p LV}, then L,(z) = 0 at almost every z € R". In particular, we shall show
that V,,({L,, > 2A}) = 0 for each A\ > 0. Thus, suppose ;. € M is positive, ;1 L V;,, and A > 0.
Let ¢ > 0. Then, since i is regular, there exists an open set £ C R" such that ;(E) < € and
Vo(R"\E) = 0. Put dw := Xgdp and do := Xpn\ gdpi. Since

{L, >2\} C{L, > A} U{L, > A},

we shall give estimates of V,,({L, > A\}) and V,,({L, > \}).
First, we shall estimate V,,({L, > A}). Putu = H, Then, by the definition, we have
L,(x) <N, p(a) [u](x) for all x € R™. Thus, Lemma 3.2 (2) and Theorem 3.1 (2) imply

Val{Zo > A}) < Va({NSV[u] > A}) < OAJullpy = CX7Hwl].

Since p(E) < € and dw = Xgdu, we obtain V,,({L, > A\}) < CA"le.
Next, we show V,,({L, > A}) = 0. First, we claim that

4.1 lim  H®(y,s) =0
¢ (y,5)—(,0) (v.5)
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forall x € E. In fact, let z € E be fixed. Since E is an open set, there exists 6 > 0 such that
B(z,25) C E. It is enough to consider the behavior of H\™ (y, s) with (y, s) sufficiently near
(x,0). Therefore, suppose |z — y| < d. Then, by (2.2) and (2.4), we have

H (y, s) < /

R™\ B(z,26)

S

Wy~ 2 5)du(2) < C

dp(2)
R\ B(z,26) (5 + [y — 2[2)n/2a+1

S S
< C/ du(z) < C—|lell,
R\ B(2,26) (’y _ Z|2a)n/2a+1 Jnt2a

because |y — z| > |z — x| — |z —y| > 20 — § = ¢ for all z € R™\ B(x, 20). Hence, we obtain
(4.1) for all x € E. Since this implies {L, > A} C R™\E, we conclude V,,({L, > \}) <
Vo (R"\ E) = 0.

By the above estimates, we have V,,({L,, > 2\}) < C'A\~'e. Since ¢ is arbitrary, we obtain
Vo.({L, > 2A}) = 0. This completes the proof. O
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