Boundary behavior of $L^{(\alpha)}$ -harmonic extensions of measures

Yôsuke HISHIKAWA and Masahiro YAMADA

ABSTRACT. For $0 < \alpha \le 1$, we consider the parabolic operator $L^{(\alpha)} = \partial/\partial t + (-\Delta_x)^{\alpha}$ on the upper half-space of the Euclidean space \mathbb{R}^{n+1} . In this paper, we study $L^{(\alpha)}$ -harmonic extensions of finite signed Borel measures on \mathbb{R}^n , which are defined by the convolutions of the fundamental solution of $L^{(\alpha)}$. We obtain a result of classical Fatou type for $L^{(\alpha)}$ -harmonic extensions of measures.

1. Introduction

Let $n \ge 1$ and let H be the upper half-space of the (n + 1)-dimensional Euclidean space, that is, $H = \{X = (x, t) \in \mathbb{R}^{n+1} : x = (x_1, \dots, x_n) \in \mathbb{R}^n, t > 0\}$. For $0 < \alpha \le 1$, the parabolic operator $L^{(\alpha)}$ is defined by

(1.1)
$$L^{(\alpha)} := \partial_t + (-\Delta_x)^{\alpha},$$

where $\partial_t = \partial/\partial t$, $\partial_j = \partial/\partial x_j$, and $\Delta_x = \partial_1^2 + \cdots + \partial_n^2$. Let C(H) be the set of all real-valued continuous functions on H. A function $u \in C(H)$ is said to be $L^{(\alpha)}$ -harmonic if $L^{(\alpha)}u = 0$ in the sense of distributions (for details, see Section 2). In this paper, we study boundary behavior of $L^{(\alpha)}$ -harmonic extensions of finite signed Borel measures on \mathbb{R}^n , which are defined by the convolutions of the fundamental solution of $L^{(\alpha)}$. The classical Fatou theorem is the following; bounded harmonic functions in the open unit disk have nontangential limits almost everywhere on the unit circle. We obtain a result of classical Fatou type for $L^{(\alpha)}$ -harmonic extensions of measures.

To state our main result, we give some definitions. We denote by $W^{(\alpha)}$ the fundamental solution of $L^{(\alpha)}$ (see Section 2 for the definition). Let $M := M(\mathbb{R}^n)$ be the set of all signed Borel measures on \mathbb{R}^n (thus necessarily, $|\mu|(\mathbb{R}^n) < \infty$ for all $\mu \in M$). We define an $L^{(\alpha)}$ -harmonic extension $\mathcal{H}^{(\alpha)}_{\mu}$ of $\mu \in M$ by

(1.2)
$$\mathcal{H}^{(\alpha)}_{\mu}(x,t) = \int_{\mathbb{R}^n} W^{(\alpha)}(x-y,t)d\mu(y), \quad (x,t) \in H.$$

It is shown that the function $\mathcal{H}^{(\alpha)}_{\mu}$ is $L^{(\alpha)}$ -harmonic on H (see [3, Theorem 5.2]). It is well known that when $\alpha = 1/2$, the fundamental solution $W^{(1/2)}$ coincides with the Poisson kernel

²⁰¹⁰ Mathematics Subject Classification: Primary 31A20; Secondary 31B25, 35K05.

Keywords and phrases: harmonic extension, boundary behavior, parabolic operator of fractional order

This work was supported in part by Grant-in-Aid for Scientific Research (C) (No. 16K05198), Japan Society for the Promotion of Science.

for H (see [4, Section 2]). Therefore, the function $\mathcal{H}^{(1/2)}_{\mu}$ is the usual harmonic extensions of μ . Let dV_n be the Lebesgue measure on \mathbb{R}^n . For $x \in \mathbb{R}^n$ and $\rho > 0$, let

$$C_{\rho}^{(\alpha)}(x) := \{(y,s) \in H : |y-x|^{2\alpha} \le \rho^{-1}s\}.$$

The following Fatou theorem is well known([1, Corollary 6.44]).

The Fatou theorem. ([1, Corollary 6.44]) Let $\mu \in M$. Suppose $d\mu = f dV_n + d\mu_s$ is the Lebesgue decomposition of μ with respect to V_n . If $\rho > 0$, then

$$\lim_{\substack{(y,s)\to(x,0)\\(y,s)\in C_{\rho}^{(1/2)}(x)}} \mathcal{H}_{\mu}^{(1/2)}(y,s) = f(x)$$

at almost every $x \in \mathbb{R}^n$.

The Fatou theorem shows that the harmonic extension of the measure $d\mu = f dV_n + d\mu_s$ has nontangential limit f(x) at almost every $x \in \mathbb{R}^n$. In this paper, we show the following theorem, which is a result of Fatou type for $\mathcal{H}^{(\alpha)}_{\mu}$ for all $0 < \alpha \leq 1$.

The main theorem. (Theorem 4.4 of this paper) Let $0 < \alpha \leq 1$ and $\mu \in M$. Suppose $d\mu = f dV_n + d\mu_s$ is the Lebesgue decomposition of μ with respect to V_n . If $\rho > 0$, then

$$\lim_{\substack{(y,s)\to(x,0)\\(y,s)\in C_{\rho}^{(\alpha)}(x)}}\mathcal{H}_{\mu}^{(\alpha)}(y,s) = f(x)$$

at almost every $x \in \mathbb{R}^n$.

We describe the construction of this paper. In Section 2, we recall definitions of the $L^{(\alpha)}$ -harmonic functions and the fundamental solution of $L^{(\alpha)}$. Furthermore, some lemmas are presented. In Section 3, we present basic properties of the parabolic Hardy spaces. In Section 4, we study the boundary behavior of $\mathcal{H}^{(\alpha)}_{\mu}$ with $\mu \in M$, and we show a result of Fatou type for $\mathcal{H}^{(\alpha)}_{\mu}$ for all $0 < \alpha \leq 1$.

Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall definitions of the $L^{(\alpha)}$ -harmonic functions and the fundamental solution of $L^{(\alpha)}$ (for details, see [4]). We begin with describing the operator $(-\Delta_x)^{\alpha}$. Since the case $\alpha = 1$ is trivial, we only describe the case $0 < \alpha < 1$. Let $C^{\infty}(H) \subset C(H)$ be the set of all infinitely differentiable functions on H and let $C_c^{\infty}(H) \subset C^{\infty}(H)$ be the set of all functions in $C^{\infty}(H)$ with compact support. Then, $(-\Delta_x)^{\alpha}$ is the convolution operator defined by

(2.1)
$$(-\Delta_x)^{\alpha}\psi(x,t) := -C_{n,\alpha}\lim_{\varepsilon \to +0} \int_{|y|>\varepsilon} \frac{\psi(x+y,t) - \psi(x,t)}{|y|^{n+2\alpha}} dV_n(y)$$

for all $\psi \in C_c^{\infty}(H)$ and $(x,t) \in H$, where $C_{n,\alpha} = -4^{\alpha}\pi^{-n/2}\Gamma((n+2\alpha)/2)/\Gamma(-\alpha) > 0$ and Γ is the gamma function. Let $\tilde{L}^{(\alpha)} := -\partial_t + (-\Delta_x)^{\alpha}$ be the adjoint operator of $L^{(\alpha)}$. Then, a function $u \in C(H)$ is said to be $L^{(\alpha)}$ -harmonic if u satisfies $L^{(\alpha)}u = 0$ in the sense of distributions, that is,

$$\int_0^\infty \!\!\!\!\int_{\mathbb{R}^n} |u(x,t)\widetilde{L}^{(\alpha)}\psi(x,t)| dV_n(x)dt < \infty \quad \text{and} \quad \int_0^\infty \!\!\!\!\!\!\int_{\mathbb{R}^n} u(x,t)\widetilde{L}^{(\alpha)}\psi(x,t)dV_n(x)dt = 0$$

for all $\psi \in C_c^{\infty}(H)$.

We present the explicit definition of the fundamental solution of $L^{(\alpha)}$. For $x \in \mathbb{R}^n$, let

$$W^{(\alpha)}(x,t) := \begin{cases} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-t|\xi|^{2\alpha} + i \ x \cdot \xi) \ dV_n(\xi) & (t > 0) \\ 0 & (t \le 0), \end{cases}$$

where $x \cdot \xi$ denotes the inner product on \mathbb{R}^n and $|\xi| = (\xi \cdot \xi)^{1/2}$. The function $W^{(\alpha)}$ is called the fundamental solution of $L^{(\alpha)}$. We also describe basic properties of $W^{(\alpha)}$. It is well known that

(2.2)
$$W^{(\alpha)}(x,t) > 0, \qquad (x,t) \in H$$

and

(2.3)
$$\int_{\mathbb{R}^n} W^{(\alpha)}(x,t) dV_n(x) = 1, \qquad 0 < t < \infty.$$

We also remark that $W^{(\alpha)}$ is $L^{(\alpha)}$ -harmonic on H and $W^{(\alpha)} \in C^{\infty}(H)$. The following estimate is [4, Lemma 3.1]: there exists a constant $C = C(n, \alpha) > 0$ such that

(2.4)
$$W^{(\alpha)}(x,t) \le C \frac{t}{(t+|x|^{2\alpha})^{n/2\alpha+1}}$$

for all $(x,t) \in H$.

In case $\alpha = 1/2$, the function $W^{(1/2)}$ is the Poisson kernel, that is,

$$W^{(1/2)}(x,t) = \begin{cases} \frac{\Gamma((n+1)/2)}{\pi^{(n+1)/2}} \frac{t}{(t^2+|x|^2)^{(n+1)/2}} & (t>0)\\ 0 & (t\le 0). \end{cases}$$

In case $\alpha = 1$, the function $W^{(1)}$ is the Gauss kernel, that is,

$$W^{(1)}(x,t) = \begin{cases} (4\pi t)^{-n/2} \exp\left(-\frac{|x|^2}{4t}\right) & (t>0)\\ 0 & (t\le 0). \end{cases}$$

In other cases, simple explicit expressions for $W^{(\alpha)}$ are not known.

3. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [4, Remark 5.7]. Some properties of their spaces have been studied in [2]. In this section, we present basic properties of the parabolic Hardy spaces. We begin with recalling definition of the parabolic Hardy spaces. For $0 < \alpha \leq 1$ and $1 \leq p \leq \infty$, the α -parabolic Hardy space h_{α}^{p} is the set of all $L^{(\alpha)}$ -harmonic functions u on H with

$$\|u\|_{\boldsymbol{h}^{p}_{\alpha}} := \sup_{t>0} \|u(\cdot,t)\|_{L^{p}} = \sup_{t>0} \left(\int_{\mathbb{R}^{n}} |u(x,t)|^{p} dV_{n}(x) \right)^{1/p} < \infty$$

We remark that by Lemma 2.2 of [2] (see Section 4 of [2])

$$\|u\|_{h^p_{\alpha}} = \lim_{t \to 0} \|u(\cdot, t)\|_{L^p}$$

for all $1 \leq p \leq \infty$ and $u \in \boldsymbol{h}_{\alpha}^{p}$.

For $1 \le p \le \infty$, the Lebesgue space $L^p := L^p(\mathbb{R}^n, dV_n)$ is defined to be the Banach space of Lebesgue measurable (real-valued) functions on \mathbb{R}^n with norm $\|\cdot\|_{L^p}$. If $d\mu = f dV_n$ with $f \in L^p$, we will write $\mathcal{H}^{(\alpha)}_{\mu} = \mathcal{H}^{(\alpha)}_f$, and we say that $\mathcal{H}^{(\alpha)}_f$ is the $L^{(\alpha)}$ -harmonic extension of the function f. We present the following lemma, which is a result of [2].

LEMMA 3.1. ([2, Theorem 4.1]) Let $0 < \alpha \leq 1$. Then, the following statements hold:

- (1) For $1 , the mapping <math>f \mapsto \mathcal{H}_f^{(\alpha)}$ is a linear isometry of L^p onto h_{α}^p .
- (2) The mapping $\mu \mapsto \mathcal{H}_{\mu}^{(\alpha)}$ is a linear isometry of M onto h_{α}^{1} .

We also describe the definition of the α -parabolic maximal function, which is introduced in [2]. We recall the definition of $C_{\rho}^{(\alpha)}(x)$. For $x \in \mathbb{R}^n$ and $\rho > 0$, let

$$C_{\rho}^{(\alpha)}(x) := \{(y,s) \in H : |y-x|^{2\alpha} \le \rho^{-1}s\}.$$

The α -parabolic maximal function $\mathcal{N}_{\rho}^{(\alpha)}[u]$ of a function u on H is defined by

$$\mathcal{N}_{\rho}^{(\alpha)}[u](x) := \sup\left\{|u(y,s)| : (y,s) \in C_{\rho}^{(\alpha)}(x)\right\}, \quad x \in \mathbb{R}^{n}.$$

Clearly, for a function u on H, we have

$$\|u\|_{\boldsymbol{h}^p_{\alpha}} \le \|\mathcal{N}^{(\alpha)}_{\rho}[u]\|_{L^p}$$

for all $0 < \alpha \le 1, 1 \le p \le \infty$, and $\rho > 0$. The following result is Theorem 7.3 of [2].

LEMMA 3.2. ([2, Theorem 7.3]) Let $0 < \alpha \le 1$ and $\rho > 0$. Then, the following statements hold:

(1) If $1 , then there exists a constant <math>C = C(n, \alpha, p, \rho) > 0$ such that

$$\|u\|_{\boldsymbol{h}^p_{\alpha}} \le \|\mathcal{N}^{(\alpha)}_{\rho}[u]\|_{L^p} \le C \|u\|_{\boldsymbol{h}^p_{\alpha}}$$

for all $L^{(\alpha)}$ -harmonic functions u on H.

(2) If p = 1, then there exists a constant $C = C(n, \alpha, \rho) > 0$ such that

$$V_n(\{x \in \mathbb{R}^n : \mathcal{N}_{\rho}^{(\alpha)}[u](x) > \lambda\}) \le \frac{C}{\lambda} \|u\|_{\boldsymbol{h}_{\alpha}^1}$$

for all $\lambda > 0$ and $L^{(\alpha)}$ -harmonic functions u on H.

4. The boundary behavior of the $L^{(\alpha)}$ -harmonic extensions

In this section, we study the boundary behavior of $\mathcal{H}_{\mu}^{(\alpha)}$ with $\mu \in M$, and we show a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ for all $0 < \alpha \leq 1$. First, we describe a result concerning the boundary behavior of $\mathcal{H}_{f}^{(\alpha)}$ with $f \in L^{p}$, which is obtained in [5]. For $1 \leq p \leq \infty$ and $f \in L^{p}$, let $\mathcal{S}(f)$ be the set of all points $x \in \mathbb{R}^{n}$ which satisfy the following condition; for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\left| \int_{B(y,r)} (f(z) - f(x)) dV_n(z) \right| < \varepsilon (|y - x| + r)^r$$

for all $y \in \mathbb{R}^n$ with $|y - x| < \delta$ and $r < \delta$, where B(y, r) is the Euclidean ball of radius r and center at y. We give the following remark.

REMARK 4.1. For $1 \le p \le \infty$ and $f \in L^p$, every Lebesgue point of f belongs to S(f). In fact, suppose that $x \in \mathbb{R}^n$ is a Lebesgue point of f, and let $\varepsilon > 0$. Then, there exists $\delta > 0$ such that

$$\int_{B(x,\eta)} \left| f(z) - f(x) \right| dV_n(z) < \varepsilon \eta^n$$

for all $\eta < 2\delta$. Thus, if $|y - x| < \delta$ and $r < \delta$, then $\eta := |y - x| + r < 2\delta$, so we have

$$\left| \int_{B(y,r)} (f(z) - f(x)) dV_n(z) \right| \le \int_{B(y,r)} |f(z) - f(x)| dV_n(z)$$

$$\le \int_{B(x,|y-x|+r)} |f(z) - f(x)| dV_n(z) < \varepsilon (|y-x|+r)^n.$$

Therefore, x belongs to $\mathcal{S}(f)$.

We describe the main theorem in [5], which is concerned with the boundary behavior of $\mathcal{H}_{f}^{(\alpha)}$ with $f \in L^{p}$ (actually the result in [5] is more general).

LEMMA 4.2. ([5, The main theorem]) Let $0 < \alpha \le 1$, $1 \le p \le \infty$, and $f \in L^p$. If $\rho > 0$, then

$$\lim_{\substack{(y,s)\to(x,0)\\(y,s)\in C_{\rho}^{(\alpha)}(x)}} \mathcal{H}_{f}^{(\alpha)}(y,s) = f(x)$$

for all $x \in \mathcal{S}(f)$.

By Remark 4.1 and Lemma 4.2, we have the following corollary, which is a result of Fatou type.

COROLLARY 4.3. Let $0 < \alpha \leq 1$, $1 \leq p \leq \infty$, and $f \in L^p$. If $\rho > 0$, then

$$\lim_{\substack{(y,s)\to(x,0)\\(y,s)\in C_{\rho}^{(\alpha)}(x)}}\mathcal{H}_{f}^{(\alpha)}(y,s) = f(x)$$

at almost every $x \in \mathbb{R}^n$.

For $\mu \in M$, we put

$$L_{\mu}(x) := \limsup_{\substack{(y,s) \to (x,0) \\ (y,s) \in C_{\alpha}^{(\alpha)}(x)}} \mathcal{H}_{\mu}^{(\alpha)}(y,s), \quad x \in \mathbb{R}^{n}.$$

We show the following theorem, which is a result of Fatou type for $\mathcal{H}_{\mu}^{(\alpha)}$ with $\mu \in M$.

THEOREM 4.4. Let $0 < \alpha \leq 1$ and $\mu \in M$. Suppose $d\mu = f dV_n + d\mu_s$ is the Lebesgue decomposition of μ with respect to V_n . If $\rho > 0$, then

$$\lim_{\substack{(y,s)\to(x,0)\\(y,s)\in C_{\rho}^{(\alpha)}(x)}}\mathcal{H}_{\mu}^{(\alpha)}(y,s) = f(x)$$

at almost every $x \in \mathbb{R}^n$.

PROOF. By Corollary 4.3 and the Jordan decomposition, it suffices to show that if $\mu \in M$ is positive and $\mu \perp V_n$ then $L_{\mu}(x) = 0$ at almost every $x \in \mathbb{R}^n$. In particular, we shall show that $V_n(\{L_{\mu} > 2\lambda\}) = 0$ for each $\lambda > 0$. Thus, suppose $\mu \in M$ is positive, $\mu \perp V_n$, and $\lambda > 0$. Let $\varepsilon > 0$. Then, since μ is regular, there exists an open set $E \subset \mathbb{R}^n$ such that $\mu(E) < \varepsilon$ and $V_n(\mathbb{R}^n \setminus E) = 0$. Put $d\omega := \mathcal{X}_E d\mu$ and $d\sigma := \mathcal{X}_{\mathbb{R}^n \setminus E} d\mu$. Since

$$\{L_{\mu} > 2\lambda\} \subset \{L_{\omega} > \lambda\} \cup \{L_{\sigma} > \lambda\},\$$

we shall give estimates of $V_n(\{L_{\omega} > \lambda\})$ and $V_n(\{L_{\sigma} > \lambda\})$.

First, we shall estimate $V_n(\{L_{\omega} > \lambda\})$. Put $u = \mathcal{H}_{\omega}^{(\alpha)}$. Then, by the definition, we have $L_{\omega}(x) \leq \mathcal{N}_{\rho}^{(\alpha)}[u](x)$ for all $x \in \mathbb{R}^n$. Thus, Lemma 3.2 (2) and Theorem 3.1 (2) imply

$$V_n(\{L_{\omega} > \lambda\}) \le V_n(\{\mathcal{N}_{\rho}^{(\alpha)}[u] > \lambda\}) \le C\lambda^{-1} \|u\|_{\boldsymbol{h}_{\alpha}^1} = C\lambda^{-1} \|\omega\|$$

Since $\mu(E) < \varepsilon$ and $d\omega = \mathcal{X}_E d\mu$, we obtain $V_n(\{L_\omega > \lambda\}) \le C\lambda^{-1}\varepsilon$. Next, we show $V_n(\{L_\sigma > \lambda\}) = 0$. First, we claim that

(4.1)
$$\lim_{(y,s)\to(x,0)}\mathcal{H}^{(\alpha)}_{\sigma}(y,s) = 0$$

for all $x \in E$. In fact, let $x \in E$ be fixed. Since E is an open set, there exists $\delta > 0$ such that $B(x, 2\delta) \subset E$. It is enough to consider the behavior of $\mathcal{H}^{(\alpha)}_{\sigma}(y, s)$ with (y, s) sufficiently near (x, 0). Therefore, suppose $|x - y| < \delta$. Then, by (2.2) and (2.4), we have

$$\mathcal{H}_{\sigma}^{(\alpha)}(y,s) \leq \int_{\mathbb{R}^n \setminus B(x,2\delta)} W^{(\alpha)}(y-z,s) d\mu(z) \leq C \int_{\mathbb{R}^n \setminus B(x,2\delta)} \frac{s}{(s+|y-z|^{2\alpha})^{n/2\alpha+1}} d\mu(z)$$
$$\leq C \int_{\mathbb{R}^n \setminus B(x,2\delta)} \frac{s}{(|y-z|^{2\alpha})^{n/2\alpha+1}} d\mu(z) \leq C \frac{s}{\delta^{n+2\alpha}} \|\mu\|,$$

because $|y - z| \ge |z - x| - |x - y| > 2\delta - \delta = \delta$ for all $z \in \mathbb{R}^n \setminus B(x, 2\delta)$. Hence, we obtain (4.1) for all $x \in E$. Since this implies $\{L_{\sigma} > \lambda\} \subset \mathbb{R}^n \setminus E$, we conclude $V_n(\{L_{\sigma} > \lambda\}) \le V_n(\mathbb{R}^n \setminus E) = 0$.

By the above estimates, we have $V_n(\{L_\mu > 2\lambda\}) \leq C\lambda^{-1}\varepsilon$. Since ε is arbitrary, we obtain $V_n(\{L_\mu > 2\lambda\}) = 0$. This completes the proof.

References

- S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, second edition, Springer-Verlag, New York, 2001.
- [2] Y. Hishikawa, M. Nishio, and M. Yamada, Fractional calculus and $L^{(\alpha)}$ -conjugates on parabolic Hardy spaces, Scientiae Mathematicae Japonicae, 77(2014), 371–391.
- [3] Y. Hishikawa, K. Saeki, and M. Yamada, The $L^{(\alpha)}$ -harmonic extensions and their properties, Sci. Rep. Fac. Educ. Gifu Univ. **35**(2011), 1–10.
- [4] M. Nishio, K. Shimomura and N. Suzuki, α -parabolic Bergman spaces, Osaka J. Math. **42**(2005), 133–162.
- [5] H. Nakagawa, A remark on the limits of nontangential type for generalized Poisson integrals, Int. J. Pure Appl. Math. **59**(2010), 343–348.

Yôsuke Hishikawa Department of Mathematics, Faculty of Education, Gifu University Yanagido 1–1, Gifu 501–1193, Japan yhishik@gifu-u.ac.jp and

Masahiro Yamada Department of Mathematics, Faculty of Education, Gifu University Yanagido 1–1, Gifu 501–1193, Japan yamada33@gifu-u.ac.jp