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ABSTRACT. For 0 < α ≤ 1, we consider the parabolic operator L(α) = ∂/∂t+(−Δx)α

on the upper half-space of the Euclidean space R
n+1

. In this paper, we study L(α)
-harmonic

extensions of finite signed Borel measures on R
n

, which are defined by the convolutions

of the fundamental solution of L(α)
. We obtain a result of classical Fatou type for L(α)

-

harmonic extensions of measures.

1. Introduction

Let n ≥ 1 and let H be the upper half-space of the (n + 1)-dimensional Euclidean space,

that is, H = {X = (x, t) ∈ R
n+1 : x = (x1, . . . , xn) ∈ R

n, t > 0}. For 0 < α ≤ 1, the

parabolic operator L(α)
is defined by

(1.1) L(α) := ∂t + (−Δx)
α,

where ∂t = ∂/∂t, ∂j = ∂/∂xj , and Δx = ∂2
1 + · · · + ∂2

n. Let C(H) be the set of all real-valued

continuous functions on H . A function u ∈ C(H) is said to be L(α)
-harmonic if L(α)u = 0 in

the sense of distributions (for details, see Section 2). In this paper, we study boundary behavior

of L(α)
-harmonic extensions of finite signed Borel measures on R

n
, which are defined by the

convolutions of the fundamental solution of L(α)
. The classical Fatou theorem is the following;

bounded harmonic functions in the open unit disk have nontangential limits almost everywhere

on the unit circle. We obtain a result of classical Fatou type for L(α)
-harmonic extensions of

measures.

To state our main result, we give some definitions. We denote by W (α)
the fundamental

solution of L(α)
(see Section 2 for the definition). Let M := M(Rn) be the set of all signed

Borel measures on R
n

(thus necessarily, |μ|(Rn) < ∞ for all μ ∈ M ). We define an L(α)
-

harmonic extension H(α)
μ of μ ∈ M by

(1.2) H(α)
μ (x, t) =

∫
Rn

W (α)(x − y, t)dμ(y), (x, t) ∈ H.

It is shown that the function H(α)
μ is L(α)

-harmonic on H (see [3, Theorem 5.2]). It is well

known that when α = 1/2, the fundamental solution W (1/2)
coincides with the Poisson kernel
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for H (see [4, Section 2]). Therefore, the function H(1/2)
μ is the usual harmonic extensions of μ.

Let dVn be the Lebesgue measure on R
n
. For x ∈ R

n
and ρ > 0, let

C(α)
ρ (x) := {(y, s) ∈ H : |y − x|2α ≤ ρ−1s}.

The following Fatou theorem is well known([1, Corollary 6.44]).

The Fatou theorem. ([1, Corollary 6.44]) Let μ ∈ M . Suppose dμ = fdVn + dμs is the

Lebesgue decomposition of μ with respect to Vn. If ρ > 0, then

lim
(y,s)→(x,0)

(y,s)∈C
(1/2)
ρ (x)

H(1/2)
μ (y, s) = f(x)

at almost every x ∈ R
n
.

The Fatou theorem shows that the harmonic extension of the measure dμ = fdVn +dμs has

nontangential limit f(x) at almost every x ∈ R
n
. In this paper, we show the following theorem,

which is a result of Fatou type for H(α)
μ for all 0 < α ≤ 1.

The main theorem. (Theorem 4.4 of this paper) Let 0 < α ≤ 1 and μ ∈ M . Suppose
dμ = fdVn + dμs is the Lebesgue decomposition of μ with respect to Vn. If ρ > 0, then

lim
(y,s)→(x,0)

(y,s)∈C
(α)
ρ (x)

H(α)
μ (y, s) = f(x)

at almost every x ∈ R
n
.

We describe the construction of this paper. In Section 2, we recall definitions of the L(α)
-

harmonic functions and the fundamental solution of L(α)
. Furthermore, some lemmas are pre-

sented. In Section 3, we present basic properties of the parabolic Hardy spaces. In Section 4,

we study the boundary behavior of H(α)
μ with μ ∈ M , and we show a result of Fatou type for

H(α)
μ for all 0 < α ≤ 1.

Throughout this paper, C will denote a positive constant whose value is not necessarily the

same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall definitions of the L(α)
-harmonic functions and the fundamental

solution of L(α)
(for details, see [4]). We begin with describing the operator (−Δx)

α
. Since the

case α = 1 is trivial, we only describe the case 0 < α < 1. Let C∞(H) ⊂ C(H) be the set of

all infinitely differentiable functions on H and let C∞
c (H) ⊂ C∞(H) be the set of all functions

in C∞(H) with compact support. Then, (−Δx)
α

is the convolution operator defined by

(2.1) (−Δx)
αψ(x, t) := −Cn,α lim

ε→+0

∫
|y|>ε

ψ(x + y, t) − ψ(x, t)

|y|n+2α
dVn(y)
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for all ψ ∈ C∞
c (H) and (x, t) ∈ H , where Cn,α = −4απ−n/2Γ

(
(n + 2α)/2

)
/Γ(−α) > 0

and Γ is the gamma function. Let L̃(α) := −∂t + (−Δx)
α

be the adjoint operator of L(α)
.

Then, a function u ∈ C(H) is said to be L(α)
-harmonic if u satisfies L(α)u = 0 in the sense of

distributions, that is,∫ ∞

0

∫
Rn

|u(x, t)L̃(α)ψ(x, t)|dVn(x)dt < ∞ and

∫ ∞

0

∫
Rn

u(x, t)L̃(α)ψ(x, t)dVn(x)dt = 0

for all ψ ∈ C∞
c (H).

We present the explicit definition of the fundamental solution of L(α)
. For x ∈ R

n
, let

W (α)(x, t) :=

⎧⎨
⎩

1

(2π)n

∫
Rn

exp(−t|ξ|2α + i x · ξ) dVn(ξ) (t > 0)

0 (t ≤ 0),

where x · ξ denotes the inner product on R
n

and |ξ| = (ξ · ξ)1/2
. The function W (α)

is called the

fundamental solution of L(α)
. We also describe basic properties of W (α)

. It is well known that

(2.2) W (α)(x, t) > 0, (x, t) ∈ H

and

(2.3)

∫
Rn

W (α)(x, t)dVn(x) = 1, 0 < t < ∞.

We also remark that W (α)
is L(α)

-harmonic on H and W (α) ∈ C∞(H). The following estimate

is [4, Lemma 3.1]: there exists a constant C = C(n, α) > 0 such that

(2.4) W (α)(x, t) ≤ C
t

(t + |x|2α)n/2α+1

for all (x, t) ∈ H .

In case α = 1/2, the function W (1/2)
is the Poisson kernel, that is,

W (1/2)(x, t) =

⎧⎪⎨
⎪⎩

Γ
(
(n + 1)/2

)
π(n+1)/2

t

(t2 + |x|2)(n+1)/2
(t > 0)

0 (t ≤ 0).

In case α = 1, the function W (1)
is the Gauss kernel, that is,

W (1)(x, t) =

⎧⎨
⎩(4πt)−n/2 exp

(
−|x|2

4t

)
(t > 0)

0 (t ≤ 0).

In other cases, simple explicit expressions for W (α)
are not known.
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3. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [4, Remark 5.7]. Some properties of their

spaces have been studied in [2]. In this section, we present basic properties of the parabolic

Hardy spaces. We begin with recalling definition of the parabolic Hardy spaces. For 0 < α ≤ 1
and 1 ≤ p ≤ ∞, the α-parabolic Hardy space hp

α is the set of all L(α)
-harmonic functions u on

H with

‖u‖hp
α

:= sup
t>0

‖u( · , t)‖Lp = sup
t>0

(∫
Rn

|u(x, t)|pdVn(x)

)1/p

< ∞.

We remark that by Lemma 2.2 of [2] (see Section 4 of [2])

‖u‖hp
α

= lim
t→0

‖u( · , t)‖Lp

for all 1 ≤ p ≤ ∞ and u ∈ hp
α.

For 1 ≤ p ≤ ∞, the Lebesgue space Lp := Lp(Rn, dVn) is defined to be the Banach space

of Lebesgue measurable (real-valued) functions on R
n

with norm ‖ · ‖Lp . If dμ = fdVn with

f ∈ Lp
, we will write H(α)

μ = H(α)
f , and we say that H(α)

f is the L(α)
-harmonic extension of the

funtion f . We present the following lemma, which is a result of [2].

LEMMA 3.1. ([2, Theorem 4.1]) Let 0 < α ≤ 1. Then, the following statements hold:

(1) For 1 < p ≤ ∞, the mapping f �→ H(α)
f is a linear isometry of Lp

onto hp
α.

(2) The mapping μ �→ H(α)
μ is a linear isometry ofM onto h1

α.

We also describe the definition of the α-parabolic maximal function, which is introduced in

[2]. We recall the definition of C
(α)
ρ (x). For x ∈ R

n
and ρ > 0, let

C(α)
ρ (x) := {(y, s) ∈ H : |y − x|2α ≤ ρ−1s}.

The α-parabolic maximal function N (α)
ρ [u] of a function u on H is defined by

N (α)
ρ [u](x) := sup

{|u(y, s)| : (y, s) ∈ C(α)
ρ (x)

}
, x ∈ R

n.

Clearly, for a function u on H , we have

(3.1) ‖u‖hp
α
≤ ‖N (α)

ρ [u]‖Lp

for all 0 < α ≤ 1, 1 ≤ p ≤ ∞, and ρ > 0. The following result is Theorem 7.3 of [2].

LEMMA 3.2. ([2, Theorem 7.3]) Let 0 < α ≤ 1 and ρ > 0. Then, the following statements
hold:

(1) If 1 < p ≤ ∞, then there exists a constant C = C(n, α, p, ρ) > 0 such that

‖u‖hp
α
≤ ‖N (α)

ρ [u]‖Lp ≤ C‖u‖hp
α
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for all L(α)
-harmonic functions u on H .

(2) If p = 1, then there exists a constant C = C(n, α, ρ) > 0 such that

Vn({x ∈ R
n : N (α)

ρ [u](x) > λ}) ≤ C

λ
‖u‖h1

α

for all λ > 0 and L(α)
-harmonic functions u on H .

4. The boundary behavior of the L(α)-harmonic extensions

In this section, we study the boundary behavior of H(α)
μ with μ ∈ M , and we show a result

of Fatou type for H(α)
μ for all 0 < α ≤ 1. First, we describe a result concerning the boundary

behavior of H(α)
f with f ∈ Lp

, which is obtained in [5]. For 1 ≤ p ≤ ∞ and f ∈ Lp
, let S(f)

be the set of all points x ∈ R
n

which satisfy the following condition; for any ε > 0 there exists

δ > 0 such that ∣∣∣∣
∫

B(y,r)

(
f(z) − f(x)

)
dVn(z)

∣∣∣∣ < ε(|y − x| + r)n

for all y ∈ R
n

with |y − x| < δ and r < δ, where B(y, r) is the Euclidean ball of radius r and

center at y. We give the following remark.

REMARK 4.1. For 1 ≤ p ≤ ∞ and f ∈ Lp
, every Lebesgue point of f belongs to S(f). In

fact, suppose that x ∈ R
n

is a Lebesgue point of f , and let ε > 0. Then, there exists δ > 0 such

that ∫
B(x,η)

∣∣f(z) − f(x)
∣∣dVn(z) < εηn

for all η < 2δ. Thus, if |y − x| < δ and r < δ, then η := |y − x| + r < 2δ, so we have∣∣∣∣
∫

B(y,r)

(
f(z) − f(x)

)
dVn(z)

∣∣∣∣ ≤
∫

B(y,r)

∣∣f(z) − f(x)
∣∣dVn(z)

≤
∫

B(x,|y−x|+r)

∣∣f(z) − f(x)
∣∣dVn(z) < ε(|y − x| + r)n.

Therefore, x belongs to S(f).

We describe the main theorem in [5], which is concerned with the boundary behavior of

H(α)
f with f ∈ Lp

(actually the result in [5] is more general).

LEMMA 4.2. ([5, The main theorem]) Let 0 < α ≤ 1, 1 ≤ p ≤ ∞, and f ∈ Lp
. If ρ > 0,

then

lim
(y,s)→(x,0)

(y,s)∈C
(α)
ρ (x)

H(α)
f (y, s) = f(x)
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for all x ∈ S(f).

By Remark 4.1 and Lemma 4.2, we have the following corollary, which is a result of Fatou

type.

COROLLARY 4.3. Let 0 < α ≤ 1, 1 ≤ p ≤ ∞, and f ∈ Lp
. If ρ > 0, then

lim
(y,s)→(x,0)

(y,s)∈C
(α)
ρ (x)

H(α)
f (y, s) = f(x)

at almost every x ∈ R
n
.

For μ ∈ M , we put

Lμ(x) := lim sup
(y,s)→(x,0)

(y,s)∈C
(α)
ρ (x)

H(α)
μ (y, s), x ∈ R

n.

We show the following theorem, which is a result of Fatou type for H(α)
μ with μ ∈ M .

THEOREM 4.4. Let 0 < α ≤ 1 and μ ∈ M . Suppose dμ = fdVn + dμs is the Lebesgue

decomposition of μ with respect to Vn. If ρ > 0, then

lim
(y,s)→(x,0)

(y,s)∈C
(α)
ρ (x)

H(α)
μ (y, s) = f(x)

at almost every x ∈ R
n
.

PROOF. By Corollary 4.3 and the Jordan decomposition, it suffices to show that if μ ∈ M
is positive and μ ⊥ Vn then Lμ(x) = 0 at almost every x ∈ R

n
. In particular, we shall show

that Vn({Lμ > 2λ}) = 0 for each λ > 0. Thus, suppose μ ∈ M is positive, μ ⊥ Vn, and λ > 0.

Let ε > 0. Then, since μ is regular, there exists an open set E ⊂ R
n

such that μ(E) < ε and

Vn(Rn\E) = 0. Put dω := XEdμ and dσ := XRn\Edμ. Since

{Lμ > 2λ} ⊂ {Lω > λ} ∪ {Lσ > λ},

we shall give estimates of Vn({Lω > λ}) and Vn({Lσ > λ}).
First, we shall estimate Vn({Lω > λ}). Put u = H(α)

ω . Then, by the definition, we have

Lω(x) ≤ N (α)
ρ [u](x) for all x ∈ R

n
. Thus, Lemma 3.2 (2) and Theorem 3.1 (2) imply

Vn({Lω > λ}) ≤ Vn({N (α)
ρ [u] > λ}) ≤ Cλ−1‖u‖h1

α
= Cλ−1‖ω‖.

Since μ(E) < ε and dω = XEdμ, we obtain Vn({Lω > λ}) ≤ Cλ−1ε.

Next, we show Vn({Lσ > λ}) = 0. First, we claim that

(4.1) lim
(y,s)→(x,0)

H(α)
σ (y, s) = 0

6
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for all x ∈ E. In fact, let x ∈ E be fixed. Since E is an open set, there exists δ > 0 such that

B(x, 2δ) ⊂ E. It is enough to consider the behavior of H(α)
σ (y, s) with (y, s) sufficiently near

(x, 0). Therefore, suppose |x − y| < δ. Then, by (2.2) and (2.4), we have

H(α)
σ (y, s) ≤

∫
Rn\B(x,2δ)

W (α)(y − z, s)dμ(z) ≤ C

∫
Rn\B(x,2δ)

s

(s + |y − z|2α)n/2α+1
dμ(z)

≤ C

∫
Rn\B(x,2δ)

s

(|y − z|2α)n/2α+1
dμ(z) ≤ C

s

δn+2α
‖μ‖,

because |y − z| ≥ |z − x| − |x − y| > 2δ − δ = δ for all z ∈ R
n\B(x, 2δ). Hence, we obtain

(4.1) for all x ∈ E. Since this implies {Lσ > λ} ⊂ R
n\E, we conclude Vn({Lσ > λ}) ≤

Vn(Rn\E) = 0.

By the above estimates, we have Vn({Lμ > 2λ}) ≤ Cλ−1ε. Since ε is arbitrary, we obtain

Vn({Lμ > 2λ}) = 0. This completes the proof. �
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