
A KNOT INVARIANT DERIVED FROM GAMMA MOVES

TOSHIFUMI TANAKA

Abstract. Any knot can be changed into either the unknot or the trefoil knot by a
finite sequence of gamma moves. We define the gamma index of a knot as the minimum
number of moves among all such sequences. We show that the gamma indices of the
knots 41, 52, 61 and 63 are equal to one and the gamma index of the connected sum of
the trefoil knot and its mirror image is equal to two.
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1. Introduction

A knot is an embedding of a circle in the oriented 3-dimensional sphere S3. Two knots are said to
be equivalent if they represent ambient isotopic embeddings.

We define gamma moves to be changes in a diagram of a knot as in Figure 1. We call two knots
gamma equivalent if there exists a sequence of gamma moves that take us from the one knot to the
other, where we can arrange the diagram of the knot any way that we want after each gamma move.
Kauffman showed that every knot is gamma equivalent to either the unknot or the trefoil knot [2].

Figure 1

We define the gamma index of a knot K as the minimal number of gamma moves needed to convert
the knot into either the unknot or the trefoil knot where the minimum is taken over all possible
diagrams of the knot. We denote it by Γ(K).

Theorem 1.1. For any knot K in {41, 52, 61, 63} as in Figure 2, we have Γ(K) = 1.

Let K̂ be the connected sum of the trefoil knot and its mirror image as in Figure 3. Then let Kn

be the connected sum of n K̂’s.

Theorem 1.2. We have
2

3
n ≤ Γ(Kn) ≤ n for any positive integer n. In particular, Γ(K2) = 2.
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4 1 5 2 6 1 6 3

Figure 2

Kthe trefoil knot

Figure 3

2. Proof of Theorem

Lemma 2.1. Each of the following moves is obtained from a single gamma move.

Figure 4

Proof. The result is obtained as shown in Figure 5.

= or or

gamma move

Figure 5
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For a knot K, we define the Arf invariant Arf(K) [1] [5] of K by Arf(K) = a2(K) (mod 2), where
a2 is the second coefficient of the Conway polynomial of K. We need the following result.

Proposition 2.2. (Kauffman)[2] Two knots are gamma-equivalent if and only if the Arf invariants
are equal.

By the following proposition, we know that there is a knot of arbitrarily large gamma index.

Proposition 2.3. For a knot K, u(K) ≤ 3Γ(K)+1 if Arf(K) = 1 and u(K) ≤ 3Γ(K) if Arf(K) = 0,
where u(K) is the unknotting number of K.

Proof. A gamma move is realized by applying three crossing changes and the unknotting number of
the trefoil knot is equal to one. Thus the inequalities are obtained from Proposition 2.2.

�
Proof of Theorem 1.1. The theorem is shown by using the definition of gamma moves and lemma 2.1
as follows. We can show Γ(41) = 1 as shown in Figure 6.

= =
gamma move

Figure 6

We have Γ(52) ≤ 1 as shown in Figure 7.

=

=

gamma move

= =

Figure 7
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We have Γ(61) ≤ 1 as shown in Figure 8.

=

=

gamma move

= =

Figure 8

We have Γ(63) ≤ 1 as shown in Figure 9.

=

=

gamma move

= =

Figure 9

It is easily seen that each knot K of {41, 52, 61, 63} is non-trivial and not isotopic to the trefoil knot.
Thus we have Γ(K) ≥ 1. This completes the proof.

Proof of Theorem 1.2. We can show that u(Kn) = 2n by using the Nakanishi index of a knot [3].
In fact, Nakanishi index is a lower bound of the unknotting number and it is easily seen that the
Nakanishi index of Kn is equal to 2n. (See [4].) Thus we know that u(Kn) ≥ 2n. On the one hand,
Kn can be changed into the unknot by applying 2n crossing changes. So we know that u(Kn) = 2n.
Next, we know that Γ(Kn) ≤ n and Arf(Kn) = 0 as shown in Figure 10. Thus by Proposition 2.3,
we know that 2n ≤ 3Γ(Kn) ≤ 3n.
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=

gamma move
=

Figure 10
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