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ABSTRACT
We define signed Gordian distances and give criteria for the Gordian distance for knots by using the

Jones polynomial, the Q-polynomial and the Rasmussen invariant of a knot. As a result, we have new
values of the Gordian distance with small crossing number.
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1. Introduction

A link is a closed oriented 1-manifold embedded smoothly in the 3-sphere S3. A knot is a link with one connected

component. A diagram of a link is a generic projection of a link to the 2-sphere in S
3 with signed double points,

called positive (or negative) crossings as in Figure 1. Let K and K ′ be two knots in S
3. The Gordian distance

from K to K ′, denoted by dG(K,K ′), is the minimum number of crossing changes needed to transform a

diagram of K into that of K ′, where the minimum is taken over all diagrams of K and K ′. A positive crossing

change (or negative crossing change) of a crossing is changing a positive (or a negative) crossing of a diagram to a

negative crossingpositive crossing

Figure 1

negative (or a positive) crossing. We define d+−(K,K ′) (or d−+(K,K ′)) as the minimum number of positive (or

negative) crossing changes needed to transform a diagram of K into that of K ′ by dG(K,K ′) crossing changes,

where the minimum is taken over all diagrams of K and K ′. (See [15] in the case when K ′ is a trivial knot.)

The Jones polynomial V is a Laurent polynomial in one variable t of a link can be defined by the following

relation.

(1) V (©; t) = 1;

(2) t−1V (L+; t)− tV (L−; t) = −(t−1/2 − t1/2)V (L0; t).

Here L+, L− and L0 are three links with diagrams differing only near a crossing as in Figure 2.

The Jones polynomial can be calculated from the Kauffman bracket
〈〉

[6]. Let D be an unoriented diagram of

a link. Then the Laurent polynomial in one variable A is defined by the following relation:

(1)
〈©〉

= 1,

(2)
〈©∪D

〉
= −(A2 +A−2)

〈
D
〉
,

(3)
〈 〉

= A
〈 〉

+A−1
〈 〉

,
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Figure 2

Then the Jones polynomial is obtained as follows:

V (L; t) = (−t−3/4)−w(D) < D > |A=t−1/4 , where w(D) is the writhe of D.

Let ω = eπ
√−1/3 and δ =

√
5− 1

2
. We need the following theorem.

Theorem 1.1. ([7]) For any link K, we have V (K;ω) = ±(
√−3)d ic(K)−1 for some non-negative integer d,

where c(K) denotes the number of components of K.

In this paper, we show the following.

Theorem 1.2. Let K and K ′ be two knots in S
3. Suppose that K ′ is obtained from K by a positive crossing

change.

Let f(t) =
tV (K ′; t)− V (K; t)

t− 1
. Then f(ω) = ±ωf ′(1)(

√−3)d for some non-negative integer d.

Let K and K ′ two be knots in S
3. By Theorem 1.1, we may assume that V (K;ω) = (−1)t1(

√−3)d1 and

V (K ′;ω) = (−1)t2(
√−3)d2 for some non-negative integers t1, t2, d1 and d2. Then we have the following theorem

which generalizes a result of Traczyk [15].

Theorem 1.3. If dG(K,K ′) = d1 − d2 ≥ 1, then d−+(K,K ′) ≡ t1 − t2 mod 2.

The Q polynomial Q(K; z) of a link K [1][4] is a Laurent polynomial in one variable z can be defined by the

following.

(1) Q(©; z) = 1;

(2) Q
(

; z
)
+Q

(
; z
)
= z

[
Q
(

; z
)
+Q

(
; z
)]

.

The folloing theorem is a generalization of a result of Stoimenow [13].

Theorem 1.4. Let K and K ′ be knots in S
3. If Q(K; δ)/Q(K ′; δ) = −(−√

5)k, then dG(K,K ′) > |k|.
Two links are concordant if there is a smooth embedding

(nS1)× [0, 1] → S3 × [0, 1]

which restricts to the given links

(nS1)× {i} → S3 × {i}
where i = 0, 1. The set of concordance classes of knots forms an abelian group under connected sum. The group

is called the knot concordance group.

Rasmussen has defined a concordance invariant s(K) of a knot K from Lee’s cohomology [10]. We call the

invariant the Rasmussen invariant. Main properties of Rasmussen invariant are summarized as follows.
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Theorem 1.5. Let K, K1 and K2 be three knots in S3. Then we have the following.

(1) The Rasmussen invariant s induces a homomorphism from the knot concordance group to Z;

(2) |s(K)| ≤ 2g4(K), where g4(K) is the slice genus of K;

(3) If K is alternating, then s(K) = σ(K), where σ(K) is the classical knot signature of K;

(4) If K2 is obtained from K1 by performing a single positive crossing change, then s(K1)− s(K2) ∈ {0, 2}.

See [9] for σ(K). We have the following by making use of this theorem.

Theorem 1.6. Let K and K ′ be two knots in S3. Let s(K,K ′) =
s(K)− s(K ′)

2
. Then d+−(K,K ′) ≥ s(K,K ′)

and d−+(K,K ′) ≥ −s(K,K ′). In particular, dG(K,K ′) ≥ |s(K,K ′)|.

2. Proofs

Proof of Theorem 1.2. By a hypothesis, we may consider that a diagram D′ of K ′ is obtained from a diagram

D of K by a single positive crossing change. We may assume D to have zero writhe adding kinks if necessarily.

Note that

V (K;A−4) = <D> and A−6V (K;A−4) = <D′> since w(D′) + 2 = w(D) = 0. By using the Kauffman bracket

relation, we have

(1) A
〈 〉

+A−1
〈 〉

= V (K;A−4),

(2) A−1
〈 〉

+A
〈 〉

= A−6V (K ′;A−4).

Thus (A2 −A−2)
〈 〉

= A−5V (K ′;A−4)−A−1V (K;A−4).

Then we obtain
〈 〉

=
A−3[A−2V (K ′;A−4)−A2V (K;A−4)]

A2 −A−2
=

−A−3
[A−4V (K ′;A−4)− V (K;A−4)

A−4 − 1

]
= −A−3

[ tV (K ′; t)− V (K; t)

t− 1

]
.

Let f(t) =
tV (K ′; t)− V (K; t)

t− 1
. Note that f(t) =

t(V (K ′; t)− 1)

t− 1
− V (K; t)− 1

t− 1
+ 1. By a result in ([5], §12),

V (K; t) − 1, V (K ′; t) − 1 and V (K̃; t) − 1 have (t − 1)(t3 − 1) as factors. Then we know that there exists

a knot K̃ with the diagram such that V (K̃; t) = tnf(t) for some integer n. Here we have V ′(K̃; t) =

ntn−1f(t) + tnf ′(t). By substituting 1, we have V ′(K̃; 1) = nf(1) + f ′(1). Thus f(1) = 1 and V ′(K̃; 1) = 0.

Therefore n = −f ′(1), and hence we have V (K̃, t) = t−f ′(1)f(t). By Theorem 1.1, we know that V (K̃;ω) =

ω−f ′(1)f(ω) = ±(
√−3)d for some non-negative integer d.

Proof of Theorem 1.3. By an assumption that dG(K,K ′) = d1 − d2, we have a sequence of d1 − d2 + 1

knots K = Kd1−d2
,Kd1−d2−1, . . . ,K1,K0 = K ′ such that K = Kd1−d2

, K0 = K ′ and dG(Kj ,Kj−1) = 1

(1 ≤ j ≤ d1 − d2). By Theorem 1.1, we may assume that V (Ki;ω) = (−1)si(
√−3)�i for some integers si and

�i (0 ≤ i ≤ d1 − d2), where �d1−d2
= d1, �0 = d2, sd1−d2

= t1 and s0 = t2. First we show that �j − �j−1 = 1

(1 ≤ j ≤ d1 − d2) as follows.

Let �j − �j−1 = nj (1 ≤ j ≤ d1 − d2) and suppose that nj ≥ 2 for some j. In the case when Kj−1 is obtained

from Kj by a positive crossing change, by substituting ω for t in the second relation of the definition of the

Jones polynomial, we have
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ω−1V (Kj ;ω)− ωV (Kj−1;ω) = e−
πi
3 ((−1)sj (

√−3)�j−1+nj )− e
πi
3 ((−1)sj−1(

√−3)�j−1)

= (
√
3i)�j−1((−1)sj (

√
3i)nj 1−√

3i
2 − (−1)sj−1 1+

√
3i

2 )

= (
√
3i)�j−1

{ (−1)sj (
√
3i)nj − (−1)sj (

√
3i)nj+1 − (−1)sj−1 − (−1)sj−1

√
3i

2

}
.

Let Pnj
=

(−1)sj (
√
3i)nj − (−1)sj (

√
3i)nj+1 − (−1)sj−1 − (−1)sj−1

√
3i

2
. If nj = 2mj(≥ 2) for a positive integer

mj , then

Pnj
=

(−1)sj (−3)mj − (−1)sj (−3)mj (
√
3i)− (−1)sj−1 − (−1)sj−1

√
3i

2

=
(−1)sj (−3)mj − (−1)sj−1

2
− (−1)sj (−3)mj + (−1)sj−1

2

√
3i.

In this case, |Pnj
|2 = (−3)mj ((−3)mj + (−1)sj+sj−1) + 1. If nj = 2mj + 1(≥ 3) for a positive integer mj , then

Pnj
=

(−1)sj (−3)mj (
√
3i)− (−1)sj (−3)mj+1 − (−1)sj−1 − (−1)sj−1

√
3i

2

= − (−1)sj (−3)mj+1 + (−1)sj−1

2
+

(−1)sj (−3)mj − (−1)sj−1

2

√
3i.

In this case, |Pnj
|2 = (−3)mj+1(−(−3)mj + (−1)sj+sj−1) + 1.

In both cases, |Pnj
|2 cannot be equal to 3d for any non-negative integer d. Then we know that ω−1V (Kj ;ω)−

ωV (Kj−1;ω) cannot have a form ±(
√−3)d for any non-negative integer d. This contradicts to Theorem 1.1.

In the case when Kj−1 is obtained from Kj by a negative crossing change, by using the same argument, we

know that ω−1V (Kj−1;ω) − ωV (Kj ;ω) also cannot have the form ±(
√−3)d for any non-negative integer d if

nj ≥ 2. Thus we know that nj ≤ 1 for any j (1 ≤ j ≤ d1−d2). Then since

d1−d2∑
p=1

np =

d1−d2∑
p=1

(�p−�p−1) = d1−d2,

1 ≥ nk = d1 − d2 −
d1−d2∑

p=1,p �=k

np ≥ 1 for any integer k (1 ≤ k ≤ d1 − d2). Therefore nk = 1 for any integer k

(1 ≤ k ≤ d1 − d2).

In the case when nj = 1 (1 ≤ j ≤ d1 − d2), we know that P =
3(−1)sj − (−1)sj−1

2
+

(−1)sj − (−1)sj−1

2

√
3i.

Then |P |2 = 4−3(−1)sj+sj−1 = 4−3(−1)sj−sj−1 = 7 if sj−sj−1 ≡ 1 mod 2. Thus ω−1V (Kj ;ω)−ωV (Kj−1;ω)

does not have the form ±(
√−3)di for any non-negative integer d if sj−sj−1 ≡ 1 mod 2 by the above calculation.

We also know that ω−1V (Kj−1;ω)− ωV (Kj ;ω) does not have a form ±(
√−3)d for any non-negative integer d

if sj − sj−1 ≡ 0 mod 2 by using the same argument. (In this case, |P |2 = 4 + 3(−1)sj−sj−1 .)

Therefore, we know that if Kj−1 is obtained from Kj by a positive crossing change then sj − sj−1 is even

(i.e. (−1)sj = (−1)sj−1), and if Ki−1 is obtained from Ki by a negative crossing change, then sj − sj−1 is

odd (i.e. (−1)sj = −(−1)sj−1). Now we have (−1)s1 = (−1)r(−1)s2 , where r is the number of the negative

crossing changes in the sequence of crossing changes of knots Kd1−d2
, . . . ,K1. Then (−1)r−(s1−s2) = 1, and

hence r ≡ s1 − s2 mod 2.

Proof of Theorem 1.4. We show the theorem by an induction with respect to the Gordian distance. Suppose

that dG(K,K ′) = 1. By an argument in the proof of Theorem 4.1 [13], Q(K, δ)/Q(K ′, δ) ∈ {±1,−(
√
5)±1}

if K ′ is obtained from K by a single crossing change. Thus if Q(K, δ)/Q(K ′, δ) = −(−√
5)k, then |k| = 0.

Therefore dG(K,K ′) = 1 > 0 = |k|. Now we assume that the result holds in the case when dG(K,K ′) = m− 1

for a positive integer m ≥ 2. Suppose that dG(K,K ′) = m ≥ 1 and Q(K, δ)/Q(K ′, δ) = −(−√
5)k

′
for some
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integer k′. Then there exist m + 1 knots K0,K1, . . . ,Km such that K = K0, K
′ = Km and dG(Ki,Ki+1) = 1

(0 ≤ i ≤ m− 1). Note that Q(K, δ)/Q(K ′, δ) = Q(K0, δ)/Q(Km−1, δ)×Q(Km−1, δ)/Q(Km, δ) = −(−√
5)k

′
. If

Q(K0, δ)/Q(Km−1, δ) = −(−√
5)k for some integer k, then we have |k| < m − 1 and Q(Km−1, δ)/Q(Km, δ) =

−(−√
5)k

′
/ − (−√

5)k = (−√
5)k

′−k ∈ {±1,−(
√
5)±1} since dG(K0,Km−1) = m − 1 and dG(Km−1,Km) = 1.

Then we have |k′−k| ≤ 1, and hence |k′| ≤ |k′−k|+|k| < m = dG(K0,Km). IfQ(K0, δ)/Q(Km−1, δ) 
= −(−√
5)k

for any integer k, that is, Q(K0, δ)/Q(Km−1, δ) = (−√
5)k for some integer k, then dG(K0,Km−1) ≥ |k̃| and

Q(Km−1, δ)/Q(Km, δ) = −(−√
5)k

′
/(−√

5)k̃ = −(−√
5)k

′−k̃ ∈ {±1,−(
√
5)±1}. Thus we have k′ − k̃ = 0.

Therefore |k′| ≤ |k′ − k̃|+ |k̃| ≤ dG(K0,Km−1) = m− 1 < m = dG(K0,Km). This completes the proof.

Proof of Theorem 1.6. If s(K,K ′) ≥ 0, then we need to perform at least s(K,K ′) positive crossing changes to

obtain K ′ from K by Theorem 1.5(4). Thus we have d+−(K,K ′) ≥ s(K,K ′). If s(K,K ′) ≤ 0, then, by using

the same idea, we have d+−(K,K ′) = d−+(K
′,K) ≥ s(K ′,K) = −s(K,K ′).

3. Examples

For a knot K, K∗ denotes the mirror image of K. In this section, we detect dG(31�41, 51), dG(31�31, 41),

dG(3
∗
1�3

∗
1, 41) and dG(31�3

∗
1, 73) which are unknown values in a table of Darcy and Sumners in [3] by using

Theorems 1.2, 1.3, 1.4 and 1.6. We also detect dG(41�41, 31), dG(41�41, 3
∗
1), dG(41�41, 52), dG(41�41, 5

∗
2) and

dG(41�41, 63) which are unknown values in a table [2] of Darcy by using Theorem 1.4. Moreover we determine

some other Gordian distances, by using Theorem 1.6, which cannot be obtained from Theorems 1.2, 1.3 and

1.4. (See Figures 3, 4, 5 ,6 and 7 for a diagram of a knot Ab.)

Example 3.1.

(1) dG(31�41, 51) = 2.

(2) d+−(31�41, 51) = 0 and d−+(31�41, 51) = 1.

We prove (1) by using Theorems 1.2 and 1.5 as follows. It is easily see that dG(31�41, 51) ≤ 2 since dG(01, 41) = 1

and dG(31, 51) = 1. Suppose that 31�41 is obtained from 51 by a positive crossing change. Then

ωV (31�41;ω)− V (51;ω)

ω − 1
=

ω(−√
3i)− (−1)

ω − 1
=

−1− ω(−√
3i)

1− ω
=

−1 +
√
3iω

ω
= ω(

√
3iω − 1) = −2−√

3i.

This contradicts to Theorem 1.2. Suppose that 51 is obtained from 31�41 by a positive crossing change. Then

by Theorem 1.5(4), we know that s(31�41) − s(51) ∈ {0, 2}. On the other hand, s(31�41) = σ(31�41) = 2 and

s(51) = σ(51) = 4 by Theorem 1.5(3). This is a contradiction. Therefore we have dG(31�41, 51) ≥ 2. In fact,

dG(31�41, 51) ≤ 2 as shown in Figure 3, and hence dG(31�41, 51) = 2. We cannot use Theorem 1.4 to show this

because Q(31�41, δ) = Q(51, δ) =
√
5. We cannot also use Theorem 1.6 since |s(31�41, 51)| = | − 1| = 1. Next

we prove (2) by Theorem 1.6. We know that d+−(31�41, 51) = 0 and d−+(31�41, 51) ≤ 1 as shown in Figure 3.

By Theorem 1.6, d−+(31�41, 51) ≥ −s(31�41, 51) = 1. Thus we have d−+(31�41, 51) = 1.

We can also prove (1) by using Theorems 1.3 and 1.6 as follows. Since V (31�41;ω) = −√−3 and V (51;ω) = −1,

if dG(31�41, 51) = 1, then d−+(31�41, 51) ≡ 0 mod 2 by Theorems 1.3, and hence d−+(31�41, 51) = 0. However,

as shown above, d−+(31�41, 51) = 1 by Theorem 1.6. This is a contradiction.

Example 3.2.

(1) dG(31�31, 41) = dG(3
∗
1�3

∗
1, 41) = 3.

(2) d+−(31�31, 41) = d−+(3
∗
1�3

∗
1, 41) = 2.
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crossing change

crossing change

crossing change

Figure 3

(3) d−+(31�31, 41) = d+−(3∗1�3
∗
1, 41) = 0.

By Theorem 1.6, d−+(3
∗
1�3

∗
1, 41) ≥ −s(3∗1�3

∗
1, 41) = −s(3∗1�3

∗
1)− s(41)

2
= 2 since s(3∗1�3

∗
1) = −4 and s(41) = 0.

Suppose that dG(3
∗
1�3

∗
1, 41) = 2. By Theorem 1.3, d−+(3

∗
1�3

∗
1, 41) ≡ 1 mod 2 since V (3∗1�3

∗
1;ω) = (−1)0(

√−3)2

and V (41;ω) = (−1)1(
√−3)0. Then we have d−+(3

∗
1�3

∗
1, 41) = 1. This is a contradiction. Thus we know

that dG(3
∗
1�3

∗
1, 41) ≥ 3. As shown in Figure 4, we know that dG(3

∗
1�3

∗
1, 41) ≤ 3, d−+(3

∗
1�3

∗
1, 41) ≤ 2 and

d+−(3∗1�3
∗
1, 41) = 0, and hence dG(3

∗
1�3

∗
1, 41) = 3, d−+(3

∗
1�3

∗
1, 41) = 2. Since dG(K,K ′) = dG(K

∗, (K ′)∗),
d−+(K,K ′) = d+−(K∗, (K ′)∗) and d+−(K,K ′) = d−+(K

∗, (K ′)∗) for any two knots K and K ′, we have

dG(31�31, 41) = 3, d+−(31�31, 41) = 2 and d−+(31�31, 41) = 0.

Example 3.3.

(1) dG(31�3
∗
1, 73) = 3.

(2) d+−(31�3∗1, 73) = 0.

We can obtain the above values by using the same argument as in Example 3.2. In fact, d−+(31�3
∗
1, 73) ≥ 2 by

Theorem 1.6. On the other hand, we have d−+(31�3
∗
1, 73) = 1 by Theorem 1.3 since V (31�3

∗
1;ω) = (−1)(

√−3)2

and V (73;ω) = (−1)0(
√−3)0 if we assume that dG(31�3

∗
1, 73) = 2. Thus dG(31�3

∗
1, 73) ≥ 3 and we obtain

dG(31�3
∗
1, 73) ≤ 3 and d+−(31�3∗1, 73) = 0 as shown in Figure 5, and hence dG(31�3

∗
1, 73) = 3. However we

cannot detect d−+(31�3
∗
1, 73). (This value is larger than or equal to 2 by the above argument.)

Remark. Miyazawa has given a criterion of the Gordian distance of knots by using the HOMFLY polynomial

in [8]. The value dG(31�41, 51) is also obtained by making use of the result. On the other hand, dG(31�31, 41),

dG(3
∗
1�3

∗
1, 41) and dG(31�3

∗
1, 73) cannot be obtained from it.

Example 3.4.

(1) dG(41�41, 31) = dG(41�41, 3
∗
1) = 3;
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crossing change

crossing changes

crossing change

* *

Figure 4

crossing change

crossing change

*

Figure 5

(2) dG(41�41, 52) = dG(41�41, 5
∗
2) = 3;

(3) dG(41�41, 63) = 3.

We know that dG(41�41, 31), dG(41�41, 3
∗
1), dG(41�41, 52), dG(41�41, 5

∗
2) and dG(41�41, 63) are less than or equal
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to 3 since dG(31, 01) = dG(41, 01) = dG(52, 01) = dG(63, 01) = 1. Then we know that the equations (1),

(2) and (3) are obtained from Theorem 1.4 since Q(31; δ) = Q(52; δ) = Q(63; δ) = −1 and Q(41; δ) = −√
5.

These numbers are undecided in the table of I. Darcy [2]. We cannot detect them by using Theorem 1.2, 1.3

bacause of the values of the Jones polynomials and we cannot also use Theorems 1.6 to detect them since

s(41�41) = σ(41�41) = 0, s(31)(or |s(3∗1)|) = σ(31)(or |σ(3∗1)|) = 2, s(52)( or |s(5∗2)|) = σ(52)( or |σ(5∗2)|) = 2

and s(61) = σ(61) = 0.

Example 3.5. Let Y be a knot in the set {31, 52, 62, 72, 76, 87, 811, 814} (see Figure 7). Let X = Y ∗. Then
(1) dG(X, 10∗145) = d−+(X, 10∗145) = 3, d+−(X, 10∗145) = 0,

(2) dG(X, 10154) = d−+(X, 10154) = 4, d+−(X, 10154) = 0,

(3) dG(X, 10∗161) = d−+(X, 10∗161) = 4, d+−(X, 10∗161) = 0.

It is easily see that dG(X, 01) ≤ 1 and dG(10
∗
145, 01) ≤ 2, dG(10154, 01) ≤ 3 and dG(10

∗
161, 01) ≤ 3. (If we

change signed crossings in Figures 6 and 7, we obtain tirivial knots.) Then we know that dG(X, 10∗145) ≤ 3,

dG(X, 10154) ≤ 4 and dG(X, 10∗161) ≤ 4. Now we show that d−+(X, 10∗145) ≥ 3, d−+(X, 10154) ≥ 4 and

d−+(X, 10∗161) ≥ 4. We can show that 10∗145, 10154 and 10∗161 as in Figure 3 are quasipositive knots [11][12][14].

In fact, 10145 and 10∗161 are the closure of quasipositive braids

σ2
2σ3σ1(σ

−1
2 σ1σ2)(σ

−1
3 σ2σ3)σ1 and (σ1σ2σ

−1
1 )σ2σ

2
1σ

3
2σ1

respectively and 10154 is a positive knot with a positive diagram consists of 10 crossings and 5 Seifert circles as

described in Figure 6.

10 15410 145 10 161
**

+
+ +

+

+

+
+

+

Figure 6

Then by using a result of Shumakovitch [14], we know that s(10∗145) = 4 and s(10154) = s(10∗161) = 6. On

the other hand, s(X) = −s(Y ) = −σ(X) = −2 since each X is an alternating knot. (For each knot Y ,

by a crossing change of the positive crossing signed in Figure 7, we have a trivial knot. Thus by Theorem

1.5(4), we know that s(Y ) ≥ 0.) Thus by using Theorem 1.6, we have d−+(X, 10∗145) ≥ −s(X)− s(10∗145)
2

=

3, d−+(X, 10154) ≥ −s(X)− s(10154)

2
= 4 and d−+(X, 10∗161) ≥ −s(X)− s(10∗161)

2
= 4. Thus we have

d−+(X, 10∗145) = dG(X, 10∗145) = 3, d−+(X, 10154) = dG(X, 10154) = 4 and d−+(X, 10∗161) = dG(X, 10∗161) = 4,

and hence d+−(X, 10∗145) = d+−(X, 10154) = d+−(X, 10∗161) = 0. However we cannot use Theorem 1.4 to detect

them because Q(10∗145; δ) = Q(10154; δ) = −1 and Q(10∗161; δ) =
√
5. (See Figure 8 for a value of Q(X; δ).)

Here we give the following problem.

Problem. For any four knots K0, K1, K2, K3, does the next equality hold?
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Figure 7

dG(K0�K1,K2�K3) = min{dG(K0,K2) + dG(K1,K3), dG(K0,K3) + dG(K1,K2)}.

In the first example, dG(31, 01) = dG(31, 51) = dG(41, 01) = 1. Thus we have

dG(31�41, 01�51) = min{dG(31, 01) + dG(41, 51), dG(31, 51) + dG(41, 01)} = 2

even if we cannot detect dG(41, 51). (In fact, we know that dG(41, 51) ≥ 2 by making use of Theorem 3.1.)

We list signatures, special values of the Jones polynomial and the Q polynomial for knots with up to 8 crossings

(Figure 8.) (Here we set a =
√−3 and b =

√
5.)
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