Signed Gordian distances，the Jones polynomial and Rasmussen invariant of knots

Toshifumi Tanaka
Department of Mathematics，Faculty of Education，Gifu University，Yanagido 1－1，Gifu，501－1193
Email：tanakat＠gifu－u．ac．jp

Abstract

We define signed Gordian distances and give criteria for the Gordian distance for knots by using the Jones polynomial，the Q－polynomial and the Rasmussen invariant of a knot．As a result，we have new values of the Gordian distance with small crossing number． Keywords：Knot；Gordian distance；Jones polynomial

1．Introduction

A link is a closed oriented 1－manifold embedded smoothly in the 3 －sphere \mathbb{S}^{3} ．A knot is a link with one connected component．A diagram of a link is a generic projection of a link to the 2 －sphere in \mathbb{S}^{3} with signed double points， called positive（or negative）crossings as in Figure 1．Let K and K^{\prime} be two knots in \mathbb{S}^{3} ．The Gordian distance from K to K^{\prime} ，denoted by $d_{G}\left(K, K^{\prime}\right)$ ，is the minimum number of crossing changes needed to transform a diagram of K into that of K^{\prime} ，where the minimum is taken over all diagrams of K and K^{\prime} ．A positive crossing change（or negative crossing change）of a crossing is changing a positive（or a negative）crossing of a diagram to a

positive crossing

negative crossing

Figure 1
negative（or a positive）crossing．We define $d_{+-}\left(K, K^{\prime}\right)$（or $d_{-+}\left(K, K^{\prime}\right)$ ）as the minimum number of positive（or negative）crossing changes needed to transform a diagram of K into that of K^{\prime} by $d_{G}\left(K, K^{\prime}\right)$ crossing changes， where the minimum is taken over all diagrams of K and K^{\prime} ．（See［15］in the case when K^{\prime} is a trivial knot．） The Jones polynomial V is a Laurent polynomial in one variable t of a link can be defined by the following relation．
（1）$V(\bigcirc ; t)=1$ ；
（2）$t^{-1} V\left(L_{+} ; t\right)-t V\left(L_{-} ; t\right)=-\left(t^{-1 / 2}-t^{1 / 2}\right) V\left(L_{0} ; t\right)$ ．
Here L_{+}, L_{-}and L_{0} are three links with diagrams differing only near a crossing as in Figure 2.
The Jones polynomial can be calculated from the Kauffman bracket \rangle［6］．Let D be an unoriented diagram of a link．Then the Laurent polynomial in one variable A is defined by the following relation：
（1）$\langle\bigcirc\rangle=1$ ，
（2）$\langle\bigcirc \cup D\rangle=-\left(A^{2}+A^{-2}\right)\langle D\rangle$ ，
（3）

Figure 2
Then the Jones polynomial is obtained as follows:
$V(L ; t)=\left(-t^{-3 / 4}\right)^{-w(D)}<D>\left.\right|_{A=t^{-1 / 4}}$, where $w(D)$ is the writhe of D.
Let $\omega=e^{\pi \sqrt{-1} / 3}$ and $\delta=\frac{\sqrt{5}-1}{2}$. We need the following theorem.
Theorem 1.1. ([7]) For any link K, we have $V(K ; \omega)= \pm(\sqrt{-3})^{d} i^{c(K)-1}$ for some non-negative integer d, where $c(K)$ denotes the number of components of K.

In this paper, we show the following.
Theorem 1.2. Let K and K^{\prime} be two knots in \mathbb{S}^{3}. Suppose that K^{\prime} is obtained from K by a positive crossing change.
Let $f(t)=\frac{t V\left(K^{\prime} ; t\right)-V(K ; t)}{t-1}$. Then $f(\omega)= \pm \omega^{f^{\prime}(1)}(\sqrt{-3})^{d}$ for some non-negative integer d.
Let K and K^{\prime} two be knots in \mathbb{S}^{3}. By Theorem 1.1, we may assume that $V(K ; \omega)=(-1)^{t_{1}}(\sqrt{-3})^{d_{1}}$ and $V\left(K^{\prime} ; \omega\right)=(-1)^{t_{2}}(\sqrt{-3})^{d_{2}}$ for some non-negative integers t_{1}, t_{2}, d_{1} and d_{2}. Then we have the following theorem which generalizes a result of Traczyk [15].

Theorem 1.3. If $d_{G}\left(K, K^{\prime}\right)=d_{1}-d_{2} \geq 1$, then $d_{-+}\left(K, K^{\prime}\right) \equiv t_{1}-t_{2} \bmod 2$.
The Q polynomial $Q(K ; z)$ of a link $K[1][4]$ is a Laurent polynomial in one variable z can be defined by the following.
(1) $Q(\bigcirc ; z)=1$;
(2) $Q(\searrow<z)+Q(\searrow / z)=z[Q(><; z)+Q(\gtrsim ; z)]$.

The folloing theorem is a generalization of a result of Stoimenow [13].
Theorem 1.4. Let K and K^{\prime} be knots in \mathbb{S}^{3}. If $Q(K ; \delta) / Q\left(K^{\prime} ; \delta\right)=-(-\sqrt{5})^{k}$, then $d_{G}\left(K, K^{\prime}\right)>|k|$.
Two links are concordant if there is a smooth embedding

$$
\left(n S^{1}\right) \times[0,1] \rightarrow S^{3} \times[0,1]
$$

which restricts to the given links

$$
\left(n S^{1}\right) \times\{i\} \rightarrow S^{3} \times\{i\}
$$

where $i=0,1$. The set of concordance classes of knots forms an abelian group under connected sum. The group is called the knot concordance group.
Rasmussen has defined a concordance invariant $s(K)$ of a knot K from Lee's cohomology [10]. We call the invariant the Rasmussen invariant. Main properties of Rasmussen invariant are summarized as follows.

Theorem 1.5. Let K, K_{1} and K_{2} be three knots in S^{3}. Then we have the following.
(1) The Rasmussen invariant s induces a homomorphism from the knot concordance group to \mathbb{Z};
(2) $|s(K)| \leq 2 g_{4}(K)$, where $g_{4}(K)$ is the slice genus of K;
(3) If K is alternating, then $s(K)=\sigma(K)$, where $\sigma(K)$ is the classical knot signature of K;
(4) If K_{2} is obtained from K_{1} by performing a single positive crossing change, then $s\left(K_{1}\right)-s\left(K_{2}\right) \in\{0,2\}$.

See [9] for $\sigma(K)$. We have the following by making use of this theorem.
Theorem 1.6. Let K and K^{\prime} be two knots in S^{3}. Let $s\left(K, K^{\prime}\right)=\frac{s(K)-s\left(K^{\prime}\right)}{2}$. Then $d_{+-}\left(K, K^{\prime}\right) \geq s\left(K, K^{\prime}\right)$ and $d_{-+}\left(K, K^{\prime}\right) \geq-s\left(K, K^{\prime}\right)$. In particular, $d_{G}\left(K, K^{\prime}\right) \geq\left|s\left(K, K^{\prime}\right)\right|$.

2. Proofs

Proof of Theorem 1.2. By a hypothesis, we may consider that a diagram D^{\prime} of K^{\prime} is obtained from a diagram D of K by a single positive crossing change. We may assume D to have zero writhe adding kinks if necessarily. Note that
$V\left(K ; A^{-4}\right)=<D>$ and $A^{-6} V\left(K ; A^{-4}\right)=<D^{\prime}>$ since $w\left(D^{\prime}\right)+2=w(D)=0$. By using the Kauffman bracket relation, we have
(1) $A\left\rangle\left\rangle+A^{-1}\langle\backsim\rangle=V\left(K ; A^{-4}\right)\right.\right.$,
(2) $A^{-1}\langle \rangle\langle \rangle+A\langle\backsim\rangle=A^{-6} V\left(K^{\prime} ; A^{-4}\right)$.

Thus $\left(A^{2}-A^{-2}\right)\langle\backsim\rangle=A^{-5} V\left(K^{\prime} ; A^{-4}\right)-A^{-1} V\left(K ; A^{-4}\right)$.
Then we obtain $\langle\backsim\rangle=\frac{A^{-3}\left[A^{-2} V\left(K^{\prime} ; A^{-4}\right)-A^{2} V\left(K ; A^{-4}\right)\right]}{A^{2}-A^{-2}}=$
$-A^{-3}\left[\frac{A^{-4} V\left(K^{\prime} ; A^{-4}\right)-V\left(K ; A^{-4}\right)}{A^{-4}-1}\right]=-A^{-3}\left[\frac{t V\left(K^{\prime} ; t\right)-V(K ; t)}{t-1}\right]$.
Let $f(t)=\frac{t V\left(K^{\prime} ; t\right)-V(K ; t)}{t-1}$. Note that $f(t)=\frac{t\left(V\left(K^{\prime} ; t\right)-1\right)}{t-1}-\frac{V(K ; t)-1}{t-1}+1$. By a result in ([5], §12), $V(K ; t)-1, V\left(K^{\prime} ; t\right)-1$ and $V(\tilde{K} ; t)-1$ have $(t-1)\left(t^{3}-1\right)$ as factors. Then we know that there exists a knot \tilde{K} with the diagram such that $V(\tilde{K} ; t)=t^{n} f(t)$ for some integer n. Here we have $V^{\prime}(\tilde{K} ; t)=$ $n t^{n-1} f(t)+t^{n} f^{\prime}(t)$. By substituting 1 , we have $V^{\prime}(\tilde{K} ; 1)=n f(1)+f^{\prime}(1)$. Thus $f(1)=1$ and $V^{\prime}(\tilde{K} ; 1)=0$. Therefore $n=-f^{\prime}(1)$, and hence we have $V(\tilde{K}, t)=t^{-f^{\prime}(1)} f(t)$. By Theorem 1.1, we know that $V(\tilde{K} ; \omega)=$ $\omega^{-f^{\prime}(1)} f(\omega)= \pm(\sqrt{-3})^{d}$ for some non-negative integer d.

Proof of Theorem 1.3. By an assumption that $d_{G}\left(K, K^{\prime}\right)=d_{1}-d_{2}$, we have a sequence of $d_{1}-d_{2}+1$ knots $K=K_{d_{1}-d_{2}}, K_{d_{1}-d_{2}-1}, \ldots, K_{1}, K_{0}=K^{\prime}$ such that $K=K_{d_{1}-d_{2}}, K_{0}=K^{\prime}$ and $d_{G}\left(K_{j}, K_{j-1}\right)=1$ $\left(1 \leq j \leq d_{1}-d_{2}\right)$. By Theorem 1.1, we may assume that $V\left(K_{i} ; \omega\right)=(-1)^{s_{i}}(\sqrt{-3})^{\ell_{i}}$ for some integers s_{i} and $\ell_{i}\left(0 \leq i \leq d_{1}-d_{2}\right)$, where $\ell_{d_{1}-d_{2}}=d_{1}, \ell_{0}=d_{2}, s_{d_{1}-d_{2}}=t_{1}$ and $s_{0}=t_{2}$. First we show that $\ell_{j}-\ell_{j-1}=1$ ($1 \leq j \leq d_{1}-d_{2}$) as follows.

Let $\ell_{j}-\ell_{j-1}=n_{j}\left(1 \leq j \leq d_{1}-d_{2}\right)$ and suppose that $n_{j} \geq 2$ for some j. In the case when K_{j-1} is obtained from K_{j} by a positive crossing change, by substituting ω for t in the second relation of the definition of the Jones polynomial, we have
$\omega^{-1} V\left(K_{j} ; \omega\right)-\omega V\left(K_{j-1} ; \omega\right)=e^{-\frac{\pi i}{3}}\left((-1)^{s_{j}}(\sqrt{-3})^{\ell_{j-1}+n_{j}}\right)-e^{\frac{\pi i}{3}}\left((-1)^{s_{j-1}}(\sqrt{-3})^{\ell_{j-1}}\right)$
$=(\sqrt{3} i)^{\ell_{j-1}}\left((-1)^{s_{j}}(\sqrt{3} i)^{n_{j}} \frac{1-\sqrt{3} i}{2}-(-1)^{s_{j-1}} \frac{1+\sqrt{3} i}{2}\right)$
$=(\sqrt{3} i)^{\ell_{j-1}}\left\{\frac{(-1)^{s_{j}}(\sqrt{3} i)^{n_{j}}-(-1)^{s_{j}}(\sqrt{3} i)^{n_{j}+1}-(-1)^{s_{j-1}}-(-1)^{s_{j-1}} \sqrt{3} i}{2}\right\}$.
Let $P_{n_{j}}=\frac{(-1)^{s_{j}}(\sqrt{3} i)^{n_{j}}-(-1)^{s_{j}}(\sqrt{3} i)^{n_{j}+1}-(-1)^{s_{j-1}}-(-1)^{s_{j-1}} \sqrt{3} i}{2}$. If $n_{j}=2 m_{j}(\geq 2)$ for a positive integer m_{j}, then
$P_{n_{j}}=\frac{(-1)^{s_{j}}(-3)^{m_{j}}-(-1)^{s_{j}}(-3)^{m_{j}}(\sqrt{3} i)-(-1)^{s_{j-1}}-(-1)^{s_{j-1}} \sqrt{3} i}{2}$
$=\frac{(-1)^{s_{j}}(-3)^{m_{j}}-(-1)^{s_{j-1}}}{2}-\frac{(-1)^{s_{j}}(-3)^{2} m^{m_{j}}+(-1)^{s_{j-1}}}{2} \sqrt{3} i$.
In this case, $\left|P_{n_{j}}\right|^{2}=(-3)^{m_{j}}\left((-3)^{m_{j}}+(-1)^{s_{j}+s_{j-1}}\right)+1$. If $n_{j}=2 m_{j}+1(\geq 3)$ for a positive integer m_{j}, then $P_{n_{j}}=\frac{(-1)^{s_{j}}(-3)^{m_{j}}(\sqrt{3} i)-(-1)^{s_{j}}(-3)^{m_{j}+1}-(-1)^{s_{j-1}}-(-1)^{s_{j-1}} \sqrt{3} i}{2}$
$=-\frac{(-1)^{s_{j}}(-3)^{m_{j}+1}+(-1)^{s_{j-1}}}{2}+\frac{(-1)^{s_{j}}(-3)^{m_{j}}-(-1)^{s_{j-1}}}{2} \sqrt{3} i$.
In this case, $\left|P_{n_{j}}\right|^{2}=(-3)^{m_{j}+1}\left(-(-3)^{m_{j}}+(-1)^{s_{j}+s_{j-1}}\right)+1$.
In both cases, $\left|P_{n_{j}}\right|^{2}$ cannot be equal to 3^{d} for any non-negative integer d. Then we know that $\omega^{-1} V\left(K_{j} ; \omega\right)-$ $\omega V\left(K_{j-1} ; \omega\right)$ cannot have a form $\pm(\sqrt{-3})^{d}$ for any non-negative integer d. This contradicts to Theorem 1.1.
In the case when K_{j-1} is obtained from K_{j} by a negative crossing change, by using the same argument, we know that $\omega^{-1} V\left(K_{j-1} ; \omega\right)-\omega V\left(K_{j} ; \omega\right)$ also cannot have the form $\pm(\sqrt{-3})^{d}$ for any non-negative integer d if $n_{j} \geq 2$. Thus we know that $n_{j} \leq 1$ for any $j\left(1 \leq j \leq d_{1}-d_{2}\right)$. Then since $\sum_{p=1}^{d_{1}-d_{2}} n_{p}=\sum_{p=1}^{d_{1}-d_{2}}\left(\ell_{p}-\ell_{p-1}\right)=d_{1}-d_{2}$, $1 \geq n_{k}=d_{1}-d_{2}-\sum_{p=1, p \neq k}^{d_{1}-d_{2}} n_{p} \geq 1$ for any integer $k\left(1 \leq k \leq d_{1}-d_{2}\right)$. Therefore $n_{k}=1$ for any integer k $\left(1 \leq k \leq d_{1}-d_{2}\right)$.
In the case when $n_{j}=1\left(1 \leq j \leq d_{1}-d_{2}\right)$, we know that $P=\frac{3(-1)^{s_{j}}-(-1)^{s_{j-1}}}{2}+\frac{(-1)^{s_{j}}-(-1)^{s_{j-1}}}{2} \sqrt{3} i$. Then $|P|^{2}=4-3(-1)^{s_{j}+s_{j-1}}=4-3(-1)^{s_{j}-s_{j-1}}=7$ if $s_{j}-s_{j-1} \equiv 1 \bmod 2$. Thus $\omega^{-1} V\left(K_{j} ; \omega\right)-\omega V\left(K_{j-1} ; \omega\right)$ does not have the form $\pm(\sqrt{-3})^{d} i$ for any non-negative integer d if $s_{j}-s_{j-1} \equiv 1 \bmod 2$ by the above calculation. We also know that $\omega^{-1} V\left(K_{j-1} ; \omega\right)-\omega V\left(K_{j} ; \omega\right)$ does not have a form $\pm(\sqrt{-3})^{d}$ for any non-negative integer d if $s_{j}-s_{j-1} \equiv 0 \bmod 2$ by using the same argument. (In this case, $|P|^{2}=4+3(-1)^{s_{j}-s_{j-1}}$.)
Therefore, we know that if K_{j-1} is obtained from K_{j} by a positive crossing change then $s_{j}-s_{j-1}$ is even (i.e. $(-1)^{s_{j}}=(-1)^{s_{j-1}}$), and if K_{i-1} is obtained from K_{i} by a negative crossing change, then $s_{j}-s_{j-1}$ is odd (i.e. $(-1)^{s_{j}}=-(-1)^{s_{j-1}}$). Now we have $(-1)^{s_{1}}=(-1)^{r}(-1)^{s_{2}}$, where r is the number of the negative crossing changes in the sequence of crossing changes of knots $K_{d_{1}-d_{2}}, \ldots, K_{1}$. Then $(-1)^{r-\left(s_{1}-s_{2}\right)}=1$, and hence $r \equiv s_{1}-s_{2} \bmod 2$.

Proof of Theorem 1.4. We show the theorem by an induction with respect to the Gordian distance. Suppose that $d_{G}\left(K, K^{\prime}\right)=1$. By an argument in the proof of Theorem $4.1[13], Q(K, \delta) / Q\left(K^{\prime}, \delta\right) \in\left\{ \pm 1,-(\sqrt{5})^{ \pm 1}\right\}$ if K^{\prime} is obtained from K by a single crossing change. Thus if $Q(K, \delta) / Q\left(K^{\prime}, \delta\right)=-(-\sqrt{5})^{k}$, then $|k|=0$. Therefore $d_{G}\left(K, K^{\prime}\right)=1>0=|k|$. Now we assume that the result holds in the case when $d_{G}\left(K, K^{\prime}\right)=m-1$ for a positive integer $m \geq 2$. Suppose that $d_{G}\left(K, K^{\prime}\right)=m \geq 1$ and $Q(K, \delta) / Q\left(K^{\prime}, \delta\right)=-(-\sqrt{5})^{k^{\prime}}$ for some
integer k^{\prime}. Then there exist $m+1$ knots $K_{0}, K_{1}, \ldots, K_{m}$ such that $K=K_{0}, K^{\prime}=K_{m}$ and $d_{G}\left(K_{i}, K_{i+1}\right)=1$ $(0 \leq i \leq m-1)$. Note that $Q(K, \delta) / Q\left(K^{\prime}, \delta\right)=Q\left(K_{0}, \delta\right) / Q\left(K_{m-1}, \delta\right) \times Q\left(K_{m-1}, \delta\right) / Q\left(K_{m}, \delta\right)=-(-\sqrt{5})^{k^{\prime}}$. If $Q\left(K_{0}, \delta\right) / Q\left(K_{m-1}, \delta\right)=-(-\sqrt{5})^{\bar{k}}$ for some integer \bar{k}, then we have $|\bar{k}|<m-1$ and $Q\left(K_{m-1}, \delta\right) / Q\left(K_{m}, \delta\right)=$ $-(-\sqrt{5})^{k^{\prime}} /-(-\sqrt{5})^{\bar{k}}=(-\sqrt{5})^{k^{\prime}-\bar{k}} \in\left\{ \pm 1,-(\sqrt{5})^{ \pm 1}\right\}$ since $d_{G}\left(K_{0}, K_{m-1}\right)=m-1$ and $d_{G}\left(K_{m-1}, K_{m}\right)=1$. Then we have $\left|k^{\prime}-\bar{k}\right| \leq 1$, and hence $\left|k^{\prime}\right| \leq\left|k^{\prime}-\bar{k}\right|+|\bar{k}|<m=d_{G}\left(K_{0}, K_{m}\right)$. If $Q\left(K_{0}, \delta\right) / Q\left(K_{m-1}, \delta\right) \neq-(-\sqrt{5})^{\bar{k}}$ for any integer \bar{k}, that is, $Q\left(K_{0}, \delta\right) / Q\left(K_{m-1}, \delta\right)=(-\sqrt{5})^{\bar{k}}$ for some integer \bar{k}, then $d_{G}\left(K_{0}, K_{m-1}\right) \geq|\tilde{k}|$ and $Q\left(K_{m-1}, \delta\right) / Q\left(K_{m}, \delta\right)=-(-\sqrt{5})^{k^{\prime}} /(-\sqrt{5})^{\tilde{k}}=-(-\sqrt{5})^{k^{\prime}-\tilde{k}} \in\left\{ \pm 1,-(\sqrt{5})^{ \pm 1}\right\}$. Thus we have $k^{\prime}-\tilde{k}=0$. Therefore $\left|k^{\prime}\right| \leq\left|k^{\prime}-\tilde{k}\right|+|\tilde{k}| \leq d_{G}\left(K_{0}, K_{m-1}\right)=m-1<m=d_{G}\left(K_{0}, K_{m}\right)$. This completes the proof.

Proof of Theorem 1.6. If $s\left(K, K^{\prime}\right) \geq 0$, then we need to perform at least $s\left(K, K^{\prime}\right)$ positive crossing changes to obtain K^{\prime} from K by Theorem 1.5(4). Thus we have $d_{+-}\left(K, K^{\prime}\right) \geq s\left(K, K^{\prime}\right)$. If $s\left(K, K^{\prime}\right) \leq 0$, then, by using the same idea, we have $d_{+-}\left(K, K^{\prime}\right)=d_{-+}\left(K^{\prime}, K\right) \geq s\left(K^{\prime}, K\right)=-s\left(K, K^{\prime}\right)$.

3. Examples

For a knot K, K^{*} denotes the mirror image of K. In this section, we detect $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right), d_{G}\left(3_{1} \sharp 3_{1}, 4_{1}\right)$, $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)$ and $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)$ which are unknown values in a table of Darcy and Sumners in [3] by using Theorems 1.2, 1.3, 1.4 and 1.6. We also detect $d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}\right), d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}^{*}\right), d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}\right), d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}^{*}\right)$ and $d_{G}\left(4_{1} \sharp 4_{1}, 6_{3}\right)$ which are unknown values in a table [2] of Darcy by using Theorem 1.4. Moreover we determine some other Gordian distances, by using Theorem 1.6, which cannot be obtained from Theorems 1.2, 1.3 and 1.4. (See Figures $3,4,5,6$ and 7 for a diagram of a knot A_{b}.)

Example 3.1.

(1) $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=2$.
(2) $d_{+-}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=0$ and $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=1$.

We prove (1) by using Theorems 1.2 and 1.5 as follows. It is easily see that $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \leq 2$ since $d_{G}\left(0_{1}, 4_{1}\right)=1$ and $d_{G}\left(3_{1}, 5_{1}\right)=1$. Suppose that $3_{1} \sharp 4_{1}$ is obtained from 5_{1} by a positive crossing change. Then
$\frac{\omega V\left(3_{1} \sharp 4_{1} ; \omega\right)-V\left(5_{1} ; \omega\right)}{\omega-1}=\frac{\omega(-\sqrt{3} i)-(-1)}{\omega-1}=\frac{-1-\omega(-\sqrt{3} i)}{1-\omega}=\frac{-1+\sqrt{3} i \omega}{\bar{\omega}}=\omega(\sqrt{3} i \omega-1)=-2-\sqrt{3} i$.
This contradicts to Theorem 1.2. Suppose that 5_{1} is obtained from $3_{1} \sharp 4_{1}$ by a positive crossing change. Then by Theorem $1.5(4)$, we know that $s\left(3_{1} \sharp 4_{1}\right)-s\left(5_{1}\right) \in\{0,2\}$. On the other hand, $s\left(3_{1} \sharp 4_{1}\right)=\sigma\left(3_{1} \sharp 4_{1}\right)=2$ and $s\left(5_{1}\right)=\sigma\left(5_{1}\right)=4$ by Theorem 1.5(3). This is a contradiction. Therefore we have $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \geq 2$. In fact, $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \leq 2$ as shown in Figure 3, and hence $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=2$. We cannot use Theorem 1.4 to show this because $Q\left(3_{1} \sharp 4_{1}, \delta\right)=Q\left(5_{1}, \delta\right)=\sqrt{5}$. We cannot also use Theorem 1.6 since $\left|s\left(3_{1} \sharp 4_{1}, 5_{1}\right)\right|=|-1|=1$. Next we prove (2) by Theorem 1.6. We know that $d_{+-}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=0$ and $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \leq 1$ as shown in Figure 3 . By Theorem 1.6, $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \geq-s\left(3_{1} \sharp 4_{1}, 5_{1}\right)=1$. Thus we have $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=1$.
We can also prove (1) by using Theorems 1.3 and 1.6 as follows. Since $V\left(3_{1} \sharp 4_{1} ; \omega\right)=-\sqrt{-3}$ and $V\left(5_{1} ; \omega\right)=-1$, if $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=1$, then $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right) \equiv 0 \bmod 2$ by Theorems 1.3 , and hence $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=0$. However, as shown above, $d_{-+}\left(3_{1} \sharp 4_{1}, 5_{1}\right)=1$ by Theorem 1.6. This is a contradiction.

Example 3.2.

(1) $d_{G}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=3$.
(2) $d_{+-}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=2$.

Figure 3
(3) $d_{-+}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=d_{+-}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=0$.

By Theorem 1.6, $d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right) \geq-s\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=-\frac{s\left(3_{1}^{*} \sharp 3_{1}^{*}\right)-s\left(4_{1}\right)}{2}=2$ since $s\left(3_{1}^{*} \sharp 3_{1}^{*}\right)=-4$ and $s\left(4_{1}\right)=0$. Suppose that $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=2$. By Theorem $1.3, d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right) \equiv 1 \bmod 2$ since $V\left(3_{1}^{*} \sharp 3_{1}^{*} ; \omega\right)=(-1)^{0}(\sqrt{-3})^{2}$ and $V\left(4_{1} ; \omega\right)=(-1)^{1}(\sqrt{-3})^{0}$. Then we have $d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=1$. This is a contradiction. Thus we know that $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right) \geq 3$. As shown in Figure 4 , we know that $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right) \leq 3, d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right) \leq 2$ and $d_{+-}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=0$, and hence $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=3, d_{-+}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)=2$. Since $d_{G}\left(K, K^{\prime}\right)=d_{G}\left(K^{*},\left(K^{\prime}\right)^{*}\right)$, $d_{-+}\left(K, K^{\prime}\right)=d_{+-}\left(K^{*},\left(K^{\prime}\right)^{*}\right)$ and $d_{+-}\left(K, K^{\prime}\right)=d_{-+}\left(K^{*},\left(K^{\prime}\right)^{*}\right)$ for any two knots K and K^{\prime}, we have $d_{G}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=3, d_{+-}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=2$ and $d_{-+}\left(3_{1} \sharp 3_{1}, 4_{1}\right)=0$.

Example 3.3.

(1) $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=3$.
(2) $d_{+-}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=0$.

We can obtain the above values by using the same argument as in Example 3.2. In fact, $d_{-+}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right) \geq 2$ by Theorem 1.6. On the other hand, we have $d_{-+}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=1$ by Theorem 1.3 since $V\left(3_{1} \sharp 3_{1}^{*} ; \omega\right)=(-1)(\sqrt{-3})^{2}$ and $V\left(7_{3} ; \omega\right)=(-1)^{0}(\sqrt{-3})^{0}$ if we assume that $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=2$. Thus $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right) \geq 3$ and we obtain $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right) \leq 3$ and $d_{+-}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=0$ as shown in Figure 5, and hence $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)=3$. However we cannot detect $d_{-+}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)$. (This value is larger than or equal to 2 by the above argument.)

Remark. Miyazawa has given a criterion of the Gordian distance of knots by using the HOMFLY polynomial in [8]. The value $d_{G}\left(3_{1} \sharp 4_{1}, 5_{1}\right)$ is also obtained by making use of the result. On the other hand, $d_{G}\left(3_{1} \sharp 3_{1}, 4_{1}\right)$, $d_{G}\left(3_{1}^{*} \sharp 3_{1}^{*}, 4_{1}\right)$ and $d_{G}\left(3_{1} \sharp 3_{1}^{*}, 7_{3}\right)$ cannot be obtained from it.

Example 3.4.
(1) $d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}\right)=d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}^{*}\right)=3$;

Figure 4

Figure 5
(2) $d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}\right)=d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}^{*}\right)=3$;
(3) $d_{G}\left(4_{1} \sharp 4_{1}, 6_{3}\right)=3$.

We know that $d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}\right), d_{G}\left(4_{1} \sharp 4_{1}, 3_{1}^{*}\right), d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}\right), d_{G}\left(4_{1} \sharp 4_{1}, 5_{2}^{*}\right)$ and $d_{G}\left(4_{1} \sharp 4_{1}, 6_{3}\right)$ are less than or equal
to 3 since $d_{G}\left(3_{1}, 0_{1}\right)=d_{G}\left(4_{1}, 0_{1}\right)=d_{G}\left(5_{2}, 0_{1}\right)=d_{G}\left(6_{3}, 0_{1}\right)=1$. Then we know that the equations (1), (2) and (3) are obtained from Theorem 1.4 since $Q\left(3_{1} ; \delta\right)=Q\left(5_{2} ; \delta\right)=Q\left(6_{3} ; \delta\right)=-1$ and $Q\left(4_{1} ; \delta\right)=-\sqrt{5}$. These numbers are undecided in the table of I. Darcy [2]. We cannot detect them by using Theorem 1.2, 1.3 bacause of the values of the Jones polynomials and we cannot also use Theorems 1.6 to detect them since $s\left(4_{1} \sharp 4_{1}\right)=\sigma\left(4_{1} \sharp 4_{1}\right)=0, s\left(3_{1}\right)\left(\right.$ or $\left.\left|s\left(3_{1}^{*}\right)\right|\right)=\sigma\left(3_{1}\right)\left(\right.$ or $\left.\left|\sigma\left(3_{1}^{*}\right)\right|\right)=2, s\left(5_{2}\right)\left(\right.$ or $\left.\left|s\left(5_{2}^{*}\right)\right|\right)=\sigma\left(5_{2}\right)\left(\right.$ or $\left.\left|\sigma\left(5_{2}^{*}\right)\right|\right)=2$ and $s\left(6_{1}\right)=\sigma\left(6_{1}\right)=0$.

Example 3.5. Let Y be a knot in the set $\left\{3_{1}, 5_{2}, 6_{2}, 7_{2}, 7_{6}, 8_{7}, 8_{11}, 8_{14}\right\}$ (see Figure 7). Let $X=Y^{*}$. Then
(1) $d_{G}\left(X, 10_{145}^{*}\right)=d_{-+}\left(X, 10_{145}^{*}\right)=3, d_{+-}\left(X, 10_{145}^{*}\right)=0$,
(2) $d_{G}\left(X, 10_{154}\right)=d_{-+}\left(X, 10_{154}\right)=4, d_{+-}\left(X, 10_{154}\right)=0$,
(3) $d_{G}\left(X, 10_{161}^{*}\right)=d_{-+}\left(X, 10_{161}^{*}\right)=4, d_{+-}\left(X, 10_{161}^{*}\right)=0$.

It is easily see that $d_{G}\left(X, 0_{1}\right) \leq 1$ and $d_{G}\left(10_{145}^{*}, 0_{1}\right) \leq 2, d_{G}\left(10_{154}, 0_{1}\right) \leq 3$ and $d_{G}\left(10_{161}^{*}, 0_{1}\right) \leq 3$. (If we change signed crossings in Figures 6 and 7 , we obtain tirivial knots.) Then we know that $d_{G}\left(X, 10_{145}^{*}\right) \leq 3$, $d_{G}\left(X, 10_{154}\right) \leq 4$ and $d_{G}\left(X, 10_{161}^{*}\right) \leq 4$. Now we show that $d_{-+}\left(X, 10_{145}^{*}\right) \geq 3, d_{-+}\left(X, 10_{154}\right) \geq 4$ and $d_{-+}\left(X, 10_{161}^{*}\right) \geq 4$. We can show that $10_{145}^{*}, 10_{154}$ and 10_{161}^{*} as in Figure 3 are quasipositive knots [11][12][14]. In fact, 10_{145} and 10_{161}^{*} are the closure of quasipositive braids
$\sigma_{2}^{2} \sigma_{3} \sigma_{1}\left(\sigma_{2}^{-1} \sigma_{1} \sigma_{2}\right)\left(\sigma_{3}^{-1} \sigma_{2} \sigma_{3}\right) \sigma_{1}$ and $\left(\sigma_{1} \sigma_{2} \sigma_{1}^{-1}\right) \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{3} \sigma_{1}$
respectively and 10_{154} is a positive knot with a positive diagram consists of 10 crossings and 5 Seifert circles as described in Figure 6.

Figure 6
Then by using a result of Shumakovitch [14], we know that $s\left(10_{145}^{*}\right)=4$ and $s\left(10_{154}\right)=s\left(10_{161}^{*}\right)=6$. On the other hand, $s(X)=-s(Y)=-\sigma(X)=-2$ since each X is an alternating knot. (For each knot Y, by a crossing change of the positive crossing signed in Figure 7, we have a trivial knot. Thus by Theorem $1.5(4)$, we know that $s(Y) \geq 0$.) Thus by using Theorem 1.6, we have $d_{-+}\left(X, 10_{145}^{*}\right) \geq-\frac{s(X)-s\left(10_{145}^{*}\right)}{2}=$ $3, d_{-+}\left(X, 10_{154}\right) \geq-\frac{s(X)-s\left(10_{154}\right)}{2}=4$ and $d_{-+}\left(X, 10_{161}^{*}\right) \geq-\frac{s(X)-s\left(10_{161}^{*}\right)}{2}=4 . \quad$ Thus we have $d_{-+}\left(X, 10_{145}^{*}\right)=d_{G}\left(X, 10_{145}^{*}\right)=3, d_{-+}\left(X, 10_{154}\right)=d_{G}\left(X, 10_{154}\right)=4$ and $d_{-+}\left(X, 10_{161}^{*}\right)=d_{G}\left(X, 10_{161}^{*}\right)=4$, and hence $d_{+-}\left(X, 10_{145}^{*}\right)=d_{+-}\left(X, 10_{154}\right)=d_{+-}\left(X, 10_{161}^{*}\right)=0$. However we cannot use Theorem 1.4 to detect them because $Q\left(10_{145}^{*} ; \delta\right)=Q\left(10_{154} ; \delta\right)=-1$ and $Q\left(10_{161}^{*} ; \delta\right)=\sqrt{5}$. (See Figure 8 for a value of $Q(X ; \delta)$.)
Here we give the following problem.

Problem. For any four knots $K_{0}, K_{1}, K_{2}, K_{3}$, does the next equality hold?

62

76

31

63

87

52

72

811

8_{14}

Figure 7

$$
d_{G}\left(K_{0} \sharp K_{1}, K_{2} \sharp K_{3}\right)=\min \left\{d_{G}\left(K_{0}, K_{2}\right)+d_{G}\left(K_{1}, K_{3}\right), d_{G}\left(K_{0}, K_{3}\right)+d_{G}\left(K_{1}, K_{2}\right)\right\} .
$$

In the first example, $d_{G}\left(3_{1}, 0_{1}\right)=d_{G}\left(3_{1}, 5_{1}\right)=d_{G}\left(4_{1}, 0_{1}\right)=1$. Thus we have $d_{G}\left(3_{1} \sharp 4_{1}, 0_{1} \sharp 5_{1}\right)=\min \left\{d_{G}\left(3_{1}, 0_{1}\right)+d_{G}\left(4_{1}, 5_{1}\right), d_{G}\left(3_{1}, 5_{1}\right)+d_{G}\left(4_{1}, 0_{1}\right)\right\}=2$
even if we cannot detect $d_{G}\left(4_{1}, 5_{1}\right)$. (In fact, we know that $d_{G}\left(4_{1}, 5_{1}\right) \geq 2$ by making use of Theorem 3.1.)

We list signatures, special values of the Jones polynomial and the Q polynomial for knots with up to 8 crossings (Figure 8.) (Here we set $a=\sqrt{-3}$ and $b=\sqrt{5}$.)

K	σ	$V(K ; \omega)$	$Q(K ; \delta)$	K	σ	$V(K ; \omega)$	$Q(K ; \delta)$
31	2	a	-1	85	4	a	1
41	0	-1	$-b$	86	2	1	-1
51	4	-1	b	87	2	1	-1
52	2	-1	-1	88	2	1	b
61	0	$-a$	1	89	0	1	$-b$
62	2	1	1	810	2	a	-1
63	0	1	-1	811	2	a	-1
71	-6	-1	-1	812	0	-1	1
72	2	1	1	813	0	-1	1
73	4	1	-1	814	2	-1	1
74	2	$-a$	b	815	-4	a	-1
75	-4	-1	-1	816	2	1	b
76	2	-1	1	817	0	1	-1
77	0	$-a$	1	818	0	3	b
81	0	1	-1	819	6	$-a$	-1
82	-4	-1	-1	820	0	$-a$	1
83	0	-1	-1	821	2	a	$-b$
84	2	-1	1				

Figure 8

Acknowledgements. This research is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 2011-2014 (23740046).

References

1. R. D. Brandt, W. B. R. Lickorish, K. C. Millett, A polynomial invariant for unoriented knots and links. Invent. Math. 84 (1986), no. 3, 563-573.
2. I. Darcy, http://www.utdallas.edu/ darcy/TAB/tabunknot.pdf.
3. I. K. Darcy, D. W. Sumners, Rational tangle distances on knots and links, Math. Proc. Camb. Phil. Soc. 128 (2000) 497-510.
4. C. F. Ho, A polynomial invariant for knots and links - preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 103-111.
5. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388.
6. L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395-407.
7. W. B. R. Lickorish, K. C. Millett, Some evaluations of link polynomials. Comment. Math. Helv. 61 (1986), no. 3, 349-359.
8. Y. Miyazawa, Gordian distance and polynomial invariants. J. Knot Theory Ramifications 20 (2011), no. 6, 895-907.
9. K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387-422.
10. J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419-447.
11. L. Rudolph, Constructions of quasipositive knots and links. I. Knots, braids and singularities (Plans-sur-Bex, 1982), 233-245, Monogr. Enseign. Math., 31, Enseignement Math., Geneva, 1983.
12. L. Rudolph, Constructions of quasipositive knots and links. II. Four-manifold theory (Durham, N.H., 1982), 485-491, Contemp. Math., 35, Amer. Math. Soc., Providence, RI, 1984.
13. A. Stoimenow, Polynomial values, the linking form and unknotting numbers, Math. Res. lett. 11 (2004) 755-769.
14. A. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots. J. Knot Theory Ramifications 16 (2007), no. 10, 1403-1412.
15. P. Traczyk, A criterion for signed unknotting number, Contemp. Math. 233 (1999) 215-220.
