Positive knots and Rasmussen＇s invariant

Toshifumi Tanaka

Department of Mathematics Education，Faculty of Education，Gifu University，Yanagido 1－1，Gifu，501－1193
Email：tanakat＠gifu－u．ac．jp

Abstract

We define the positive（resp．negative）index of a knot as the minimal number of crossing changes which are needed to make the knot into a positive（resp．negative）knot．We give lower bounds for the invariants of knots by using the Rasmussen invariant．We detect the invariants for a torus knot．We also compute the invariant for most knots with crossing number less than 8 ． Keywords：positive knot；Rasmussen invariant；unknotting number

1．Introduction

A link is smoothly embedded circles in the 3 －sphere \mathbb{S}^{3} ．A knot is a link with one connected component．We assume that every link is oriented．A diagram of a link is a generic projection of a link to the 2 －sphere in \mathbb{S}^{3} with signed double points，called positive（or negative）crossings as in Figure 1.

Figure 1
We say that a knot is positive if it admits a diagram with all positive crossings．We define an invariant u_{P} （resp．u_{N} ）of a link as the minimal number of crossing changes which are needed to make the knot into a positive（resp．negative）knot．We call the number the positive（resp．negative）index of a link．Let $u(K)$ be the unknotting number of a knot K ．In［4］，Rasmussen has introduced an effective concordance invariant $s(K)$ of a knot K which gives a lower bound for the unknotting number．Let K ！be the mirror image of a knot K with reversed orientation．In this paper，we show the following．

Theorem 1．1．Let K be a knot in \mathbb{S}^{3} ．
（1）$-\frac{s(K)}{2} \leq u_{P}(K) \leq u(K)$ ；
（2）$\frac{s(K)}{2} \leq u_{N}(K) \leq u(K)$ ；
（3）$u_{P}(K)=u_{N}(K!)$ ．
Corollary 1．2．Let $T(p, q)$ be the torus knot of type (p, q) ．
（1）$u_{P}(T(p, q))=0$ ；
（2）$u_{N}(T(p, q))=\frac{(p-1)(q-1)}{2}$ ．
We say that a knot is slice if it bounds a smooth disc in the 4 －ball．

Proposition 1.3. Let K be a knot with unknotting number one. If K is slice, then both of the positive index and the negative index equal one.
Corollary 1.4. There exists a knot K such that $s(K)=0$ and $u_{P}(K)=u_{N}(K)=1$.
This paper is organized as follows. In Section 2, we will recall properties of Rasmussen invariant and prove our results. In Section 3, we will give a result of computations of the positive and the negative indices for knots with crossing number less than 8.

2. Rasmussen invariant

In a paper of Khovanov published in 2000 [2], a cohomology has been constructed from a diagram of a knot or a link via ($1+1$)-TQFT. Lee modified Khovanov's TQFT and simplified the cohomology [3], and Rasmussen has defined an effective concordance invariant $s(K)$ of a knot K from Lee's cohomology [4]. (We call the invariant the Rasmussen invariant.) Rasmussen has detected the unknotting number of a torus knot by using the invariant and proved Milnor's conjecture combinatorially.
The slice genus of a knot K in S^{3} is the least integer g such that K is the boundary of a connected, orientable 2-manifold S with genus g smoothly embedded in the 4 -ball B^{4} bounded by S^{3}. The slice genus of K is denoted by $g_{4}(K)$.
Two links are concordant if there is a smooth embedding

$$
\left(n S^{1}\right) \times[0,1] \rightarrow S^{3} \times[0,1]
$$

which restricts to the given links

$$
\left(n S^{1}\right) \times\{i\} \rightarrow S^{3} \times\{i\}
$$

where $i=0,1$. The set of concordance classes of knots forms an abelian group under connected sum [1]. The group is called the knot concordance group.
Main properties of Rasmussen invariant are summarized as follows [4].
Theorem 2.1. If K is a knot in S^{3}, then we have the following.
(1) s induces a homomorphism from the knot concordance group to \mathbb{Z};
(2) $|s(K)| \leq 2 g_{4}(K)$, where $g_{4}(K)$ is the slice genus of K;
(3) If K is alternating, then $s(K)=\sigma(K)$, where $\sigma(K)$ is the classical knot signature of K;
(4) If K_{1} is obtained from K_{2} by performing a single crossing change, then $\left|s\left(K_{1}\right)-s\left(K_{2}\right)\right| \leq 2$.

Theorem 2.2. If K is a positive knot, $s(K)=2 g_{4}(K)=2 g(K)$, where $g(K)$ is the ordinary genus of K.
Theorem 2.3. If K is a knot, then we have $s(K)=-s(K!)$.
Proof of Theorem 1.1. Since the unknot is positive and negative, we have the right inequalities of (1) and (2), $u_{P} \leq u(K)$ and $u_{N}(K) \leq u(K)$. The equation (3) follows from the definition immediately. The left inequality of $(2), s(K) / 2 \leq u_{N}(K)$, follows from that of (1), $-s(K!) / 2 \leq u_{P}(K!)$, the equality (3) and Theorem 2.3. Hence, it is suffice to show that $-s(K) / 2 \leq u_{P}(K)$. If $s(K)$ is positive, then the inequality holds. So we assume that $s(K) \leq 0$ and let $-s(K) / 2=n_{K}$. (The integer $s(K)$ is always even.) Then we need to perform at least n_{K} crossing changes to have a knot with non-negative Rasmussen invariant by Theorem 2.1(4). By Theorem 2.2, if K is a positive knot, then $s(K) \geq 0$. Thus by the definition, we have $n_{K} \leq u_{P}(K)$.

Proof of Corollary 1.2. The torus knot $T(p, q)$ is a positive knot. Hence $u_{P}(T(p, q))=0$. By a result in [4], it is shown that $s(K)=2 u(K)=(p-1)(q-1)$. Thus, by Theorem 1.1(2), we know that $u_{N}(T(p, q))=(p-1)(q-1) / 2$.

Proof of Proposition 1.3. Let K be a slice knot with unknotting number one. Then we know that $s(K)=0$ and K is non-trivial. By Theorem 2.2, if K is non-trivial positive knot, then $s(K)$ is positive. Thus, we need to perform at least one crossing change to make K into a positive knot by Theorem 2.1(4). Therefore, we
have $u_{P}(K) \geq 1$. By Theorem 2.2 and 2.3 , we know that non-trivial negative knot have negative Rasmussen invariant. So by using the same method as above, we know that $u_{N}(K) \geq 1$. Then by Theorem 1.1, we have $u_{P}(K)=u_{N}(K)=1$.
Proof of Corollary 1.4. Let K be a Stevedore's knot as shown in Figure 2. Then we know that K is a slice knot and $u(K)=1$. Thus, Corollay 1.4 follows from Proposition 1.3.

Stevedore's Knot

Figure 2

3. Examples

In this section, we calculate the positive index and the negative index for some knots. Finally, we give a list of computations for knots with crossing number less than 8 .
We need the following proposition.
Proposition 3.1. Let K be a positive knot and let $T B(K)$ be the maximal Thurston-Bennequin invariant of a knot K. If K be a positive knot then $T B(K)+1=s(K)$.

Proof. The result follows from results in [6] and [4].

Example 3.2. Let K be the knot 82 in Rolfsen's table [5] (See Figure 3). Then $s(K)=\sigma(K)=-4$ and $-s(K) / 2=2 \leq u_{P}(K) \leq u(K)=2$. Thus $u_{P}(K)=2$. The knot K is transformed into a negative knot by performing a single crossing changes as shown in Figure 2. (Change the crossing marked by a dotted circle.) Hence we know that $u_{N}(K) \leq 1$. However, we can show that $T B(K!) \neq s(K!)-1$. Thus we have $u_{N}(K)=1$ by Proposition 3.1.

Figure 3

Example 3.3. Next, let K be the knot 8_{16} in Rolfsen's table (See Figure 4). Then $s(K)=\sigma(K)=-2$ and $u(K)=2$. The knot K can be transformed into a negative knot as shown in Figure 3 by a single crossing change. So we know that $u_{N}(K) \leq 1$. On the other hand, we can show that $T B(K!) \neq s(K!)-1$. Thus $u_{N}(K)=1$ by Proposition 3.1.

Figure 4
The knot K can be also transformed into a positive knot as shown in Figure 5 by two crossing changes. So we know that $u_{P}(K) \leq 2$. Now let K^{*} be a knot obtained from K by a single crossing change. If $s\left(K^{*}\right)=0$, then K^{*} is not a positive knot since K has unknotting number two and non-trivial positive knot has positive Rasmussen invariant by Theorem 2.2. If $s\left(K^{*}\right) \neq 0$, then $s\left(K^{*}\right)$ is still negative, because of Theorem 2.1(4). Hence K^{*} is not a positive knot by Theorem 1.1(1). Thus $u_{P}(K) \geq 2$ and we have $u_{P}(K)=2$.

Figure 5
Finally, we show a list of the positive indices and the negative indices of knots with crossing number less than or equal 8 in Rolfsen's table. (The character X means that the number is one or two.)

Acknowledgements. This research is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 2011-2014 (23740046).

References

1. R. H. Fox, A quick trip through knot theory, 1962 Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) 120-167 Prentice-Hall, Englewood Cliffs, N.J.
2. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359-426.
3. E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math., 197 (2005), 554-586.
4. J. Rasmussen, Khovanov homology and the slice genus, arXiv:math.GT/0402131.
5. D. Rolfsen, Knots and Links, Math. Lecture Ser. 7. Publish or Perish, Berkeley, Calif., 1976.
6. T. Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3427-3432.

K	u_{P}	u_{N}	u	K	u_{P}	u_{N}	u
3_{1}	0	1	1	8_{5}	X	2	2
4_{1}	1	1	1	8_{6}	2	1	2
5_{1}	2	0	2	8_{7}	1	1	1
5_{2}	1	0	1	8_{8}	X	X	2
6_{1}	1	1	1	8_{9}	1	1	1
6_{2}	1	1	1	8_{10}	1	2	2
6_{3}	1	1	1	8_{11}	1	1	1
7_{1}	0	3	3	8_{12}	X	X	2
7_{2}	1	0	1	8_{13}	1	1	1
7_{3}	0	2	2	8_{14}	1	1	1
7_{4}	0	2	2	8_{15}	0	2	2
7_{5}	0	2	2	8_{16}	2	1	2
7_{6}	1	1	1	8_{17}	1	1	1
7_{7}	1	1	1	8_{18}	1	1	2
8_{1}	1	1	1	8_{19}	0	3	3
8_{2}	2	1	2	8_{20}	1	1	1
8_{3}	X	X	2	8_{21}	1	1	1
8_{4}	2	X	2				

Figure 6

