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ABSTRACT
We define the positive (resp. negative) index of a knot as the minimal number of crossing changes

which are needed to make the knot into a positive (resp. negative) knot. We give lower bounds for the
invariants of knots by using the Rasmussen invariant. We detect the invariants for a torus knot. We
also compute the invariant for most knots with crossing number less than 8.
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1. Introduction

A link is smoothly embedded circles in the 3-sphere S
3. A knot is a link with one connected component. We

assume that every link is oriented. A diagram of a link is a generic projection of a link to the 2-sphere in S
3

with signed double points, called positive (or negative) crossings as in Figure 1.

or

Figure 1

We say that a knot is positive if it admits a diagram with all positive crossings. We define an invariant uP

(resp. uN ) of a link as the minimal number of crossing changes which are needed to make the knot into a
positive (resp. negative) knot. We call the number the positive (resp. negative) index of a link. Let u(K) be
the unknotting number of a knot K. In [4], Rasmussen has introduced an effective concordance invariant s(K)
of a knot K which gives a lower bound for the unknotting number. Let K! be the mirror image of a knot K
with reversed orientation. In this paper, we show the following.

Theorem 1.1. Let K be a knot in S
3.

(1) −s(K)

2
≤ uP (K) ≤ u(K);

(2)
s(K)

2
≤ uN (K) ≤ u(K);

(3) uP (K) = uN (K!).

Corollary 1.2. Let T (p, q) be the torus knot of type (p, q).
(1) uP (T (p, q)) = 0;

(2) uN (T (p, q)) =
(p− 1)(q − 1)

2
.

We say that a knot is slice if it bounds a smooth disc in the 4-ball.
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Proposition 1.3. Let K be a knot with unknotting number one. If K is slice, then both of the positive index
and the negative index equal one.

Corollary 1.4. There exists a knot K such that s(K) = 0 and uP (K) = uN (K) = 1.

This paper is organized as follows. In Section 2, we will recall properties of Rasmussen invariant and prove our
results. In Section 3, we will give a result of computations of the positive and the negative indices for knots
with crossing number less than 8.

2. Rasmussen invariant

In a paper of Khovanov published in 2000 [2], a cohomology has been constructed from a diagram of a knot
or a link via (1+1)-TQFT. Lee modified Khovanov’s TQFT and simplified the cohomology [3], and Rasmussen
has defined an effective concordance invariant s(K) of a knot K from Lee’s cohomology [4]. (We call the
invariant the Rasmussen invariant.) Rasmussen has detected the unknotting number of a torus knot by using
the invariant and proved Milnor’s conjecture combinatorially.
The slice genus of a knot K in S3 is the least integer g such that K is the boundary of a connected, orientable
2-manifold S with genus g smoothly embedded in the 4-ball B4 bounded by S3. The slice genus of K is denoted
by g4(K).
Two links are concordant if there is a smooth embedding

(nS1)× [0, 1] → S3 × [0, 1]

which restricts to the given links

(nS1)× {i} → S3 × {i}
where i = 0, 1. The set of concordance classes of knots forms an abelian group under connected sum [1]. The
group is called the knot concordance group.
Main properties of Rasmussen invariant are summarized as follows [4].

Theorem 2.1. If K is a knot in S3, then we have the following.
(1) s induces a homomorphism from the knot concordance group to Z;
(2) |s(K)| ≤ 2g4(K), where g4(K) is the slice genus of K;
(3) If K is alternating, then s(K) = σ(K), where σ(K) is the classical knot signature of K;
(4) If K1 is obtained from K2 by performing a single crossing change, then |s(K1)− s(K2)| ≤ 2.

Theorem 2.2. If K is a positive knot, s(K) = 2g4(K) = 2g(K), where g(K) is the ordinary genus of K.

Theorem 2.3. If K is a knot, then we have s(K) = −s(K!).

Proof of Theorem 1.1. Since the unknot is positive and negative, we have the right inequalities of (1) and (2),
uP ≤ u(K) and uN (K) ≤ u(K). The equation (3) follows from the definition immediately. The left inequality
of (2), s(K)/2 ≤ uN (K), follows from that of (1), −s(K!)/2 ≤ uP (K!), the equality (3) and Theorem 2.3.
Hence, it is suffice to show that −s(K)/2 ≤ uP (K). If s(K) is positive, then the equality holds. So we assume
that s(K) ≤ 0 and let s(K)/2 = nK . (The integer s(K) is always even.) Then we need to perform at least nK

crossing changes to have a knot with non-negative Rasmussen invariant by Theorem 2.1(4). By Theorem 2.2,
if K is a positive knot, then s(K) ≥ 0. Thus by the definition, we have nK ≤ uP .

Proof of Corollary 1.2. The torus knot T (p, q) is a positive knot. Hence uP (T (p, q)) = 0. By a result in [4], it is
shown that s(K) = 2u(K) = (p−1)(q−1). Thus, by Theorem 1.1(2), we know that uN (T (p, q)) = (p−1)(q−1)/2.

Proof of Proposition 1.3. Let K be a slice knot with unknotting number one. Then we know that s(K) = 0
and K is non-trivial. By Theorem 2.2, if K is non-trivial positive knot, then s(K) is positive. Thus, we need
to perform at least one crossing change to make K into a positive knot by Theorem 2.1(4). Therefore, we
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have uP (K) ≥ 1. By Theorem 2.2 and 2.3, we know that non-trivial negative knot have negative Rasmussen
invariant. So by using the same method as above, we know that uN (K) ≥ 1. Then by Theorem 1.1, we have
uP (K) = uN (K) = 1.
Proof of Corollary 1.4. Let K be a Stevedore’s knot as shown in Figure 2. Then we know that K is a slice knot
and u(K) = 1. Thus, Corollay 1.4 follows from Proposition 1.3.

Stevedore's Knot

Figure 2

3. Examples

In this section, we calculate the positive index and the negative index for some knots. Finally, we give a list of
computations for knots with crossing number less than 8.
We need the following proposition.

Proposition 3.1. Let K be a positive knot and let TB(K) be the maximal Thurston-Bennequin invariant of a
knot K. If K be a positive knot then TB(K) + 1 = s(K).

Proof. The result follows from results in [6] and [4].

Example 3.2. Let K be the knot 82 in Rolfsen’s table [5] (See Figure 3). Then s(K) = σ(K) = −4 and
−s(K)/2 = 2 ≤ uP (K) ≤ u(K) = 2. Thus up(K) = 2. The knot K is transformed into a negative knot by
performing a single crossing changes as shown in Figure 2. (Change the crossing marked by a dotted circle.)
Hence we know that uN (K) ≤ 1. However, we can show that TB(K!) �= s(K!)− 1. Thus we have uN (K) = 1
by Proposition 3.1.

82

Figure 3

�

�������	
�������������	������������



Example 3.3. Next, let K be the knot 816 in Rolfsen’s table (See Figure 4). Then s(K) = σ(K) = −2 and
u(K) = 2. The knot K can be transformed into a negative knot as shown in Figure 3 by a single crossing
change. So we know that uN (K) ≤ 1. On the other hand, we can show that TB(K!) �= s(K!) − 1. Thus
uN (K) = 1 by Proposition 3.1.

816

Figure 4

The knot K can be also transformed into a positive knot as shown in Figure 5 by two crossing changes. So
we know that uP (K) ≤ 2. Now let K∗ be a knot obtained from K by a single crossing change. If s(K∗) = 0,
then K∗ is not a positive knot since K has unknotting number two and non-trivial positive knot has positive
Rasmussen invariant by Theorem 2.2. If s(K∗) �= 0, then s(K∗) is still negative, because of Theorem 2.1(4).
Hence K∗ is not a positive knot by Theorem 1.1(1). Thus uP (K) ≥ 2 and we have uP (K) = 2.

816

Figure 5

Finally, we show a list of the positive indices and the negative indices of knots with crossing number less than
or equal 8 in Rolfsen’s table. (The character X means that the number is one or two.)
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K u u u K u u u
3 0 1 1 8 X 2 2
4 1 1 1 8 2 1 2
5 2 0 2 8 1 1 1
5 1 0 1 8 X X 2
6 1 1 1 8 1 1 1
6 1 1 1 8 1 2 2
6 1 1 1 8 1 1 1
7 0 3 3 8 X X 2
7 1 0 1 8 1 1 1
7 0 2 2 8 1 1 1
7 0 2 2 8 0 2 2
7 0 2 2

2

8 2 1 2
7 1 1 1 8 1 1 1
7 1 1 1 8 1 1 2
8 1 1 1 8 0 3 3
8 2 1 2

2
8 1 1 1

8 X X 8 1 1 1
8 2 X
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Figure 6
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