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Abstract

The purposes of the present note are to consider Lie algebras of polynomial
vector fields on the complex line C and to investigate its Lie algebra structure;
the results obtained here are included in the first author’s master thesis study,
supervised by the second author, and are detailed there [3].

1 Introduction

Let M=C be the complex line with the standard coordinate z. A vector field X on C is
a polynomial vector field, abbreviated PVF(of degree n ∈ N ∪ {0}), if it is expressed as

X = f(z)
∂

∂z
, where f(z) =

∑n
j=0 ajz

j, (aj ∈ C, 1 ≤ j ≤ n, an �= 0) is a polynomial of

degree n. Then for two PVFs X = f
∂

∂z
, Y = g

∂

∂z
, we have the usual bracket product

[X,Y ] := (fg′ − gf ′)
∂

∂z
, which is again a PVF. Hence the set p of PVF’s on C with

this bracket product is obviously an infinite dimensional complex Lie algebra, which is
referred to the polynomial Lie algebra or the LAP. Any Lie subalgebra of p may be called
a LAP. Then we consider a LAP g generated by finitely many k polynomial vector fields
{Xi; 1 ≤ i ≤ k} of degree less than n + 1:

Xi = (
n∑

j=1

aijz
j)

∂

∂z
, aij ∈ C.

We investigate conditions for g to be finite-dimensional and further we examine which
one is abelian, nilpotent, solvable, or semisimple. The procedure of investigation is ad
hoc and not comprehensive. If a LAP g is finite dimensional we can define its degree
d, denoted d = deg g, by the highest degree of PVF in g. Then we have two numerical
invariants, deg g and dim g, closely related but differ in general. We first consider LAPs
of degree less than 3 and have only three cases to investigate: dim = 1, dim = 2, and
dim = 3. The first case; g is abelian and trivial, the second and the third are worth to
examine. For higher degree cases we examine whether there exist LAPs of dim ≥ 2. For
further references we use the terminology low dimension for dimensions less than three,
otherwise higher dimension. The readers are referred to [10] for the basics of Lie algebras
of holomorphic vector fields on complex manifolds. We should remark that even if g is
generated by finitely many PVFs of degree less than n, it doesn’t imply deg g≤ n, as is
easily observed; deg g≥ n in general.
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2 Lie algebras of quadratic vector fields

In this subsection we consider polynomial vector fields of degree two, which we call
quadratic vector fields, or QVF. A linear vector field mean degree one PVF. If a C vector
space g is generated by finitely many QVF’s, it is obvious dim g≤ 3, since the quadratic
polynomials are generated by 1, z, z2. As for the bracket product of the Lie algebra
structure, we have

[Xi, Xj] = ((ai1aj2 − ai2aj1)z
2 + 2(ai0aj2 − ai2aj0)z + (ai0aj1 − ai1aj0))

∂

∂z
.

Thus we have [Xi, Xj] ∈ g, for all Xi, Xj ∈ g, which implies every element X of g is a
linear or quadratic vector field. So we can define a quadratic Lie algebra g to be a LAP
of degree two. Furthermore it is of dimension less than 4. We define the generic LAQ

to be g generated by the base {1, z, z2} ∂

∂z
.

2.1 Three dimensional quadratic Lie algebra

In this subsection we discuss the generic LAQ, i.e., three dimensional case. Before stating
a result we recall the definition of the (first) derived ideal D• := [g, g] of g. Then we
have the following

Theorem 2.1 There exists a unique three dimensional LAQ, the generic g which is
semisimple.

Proof. We know that g is semi-simple iff g satisfies the condition g=D• , which is verified
by the arguments in the previous sections (see also [3]). The uniqueness is obvious from
the construction of g. Q.E.D.

2.2 Two dimensional quadratic Lie algebras

Here we discuss the two dimensional case.

Theorem 2.2 The set S of two dimensional LAQs is in one to one correspondence with
an algebraic surface of the quasi projective variety C

2 × CP1 defined by the following
homogeneous polynomial of degree 4:

(a12a20 − a10a22)
2 = (a10a21 − a11a20)(a11a22 − a12a21),

where an element g ∈ S is generated by X1 = (a12z
2 + a11z + a10)

∂

∂z
and X2 = (a22z

2 +

a21z + a20)
∂

∂z
.

Proof. The LAQ g = < X1, X2 >C is of dimension two, iff there exist α, β ∈ C such
that

[X1, X2] = αX1 + βX2

[X1, X2] = ((a11a22 − a12a21)z
2 + 2(a10a22 − a12a20)z + (a10a21 − a11a20))

∂

∂z

2
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αX1 + βX2 = ((αa12 + βa22)z
2 + (αa11 + βa21)z + (αa10 + βa20))

∂

∂z
.

Hence we have the following linear equations with respect to the variables (α, β)

⎛
⎝a12 a22

a11 a21

a10 a20

⎞
⎠(

α
β

)
=

⎛
⎝ a11a22 − a12a21

2(a10a22 − a12a20)
a10a21 − a11a20

⎞
⎠

.

For the above to have solutions it suffices to hold

det

⎛
⎝a12 a22 a11a22 − a12a21

a11 a21 2(a10a22 − a12a20)
a10 a20 a10a21 − a11a20.

⎞
⎠ = 0 .

Hence we have (a12a20 − a10a22)
2 = (a10a21 − a11a20)(a11a22 − a12a21). Q.E.D.

On the structures of other LAQs we will remark in the final section.

3 Polynomial Lie algebras of higher degree (d ≥ 3)

In the previous section we determined the possible LAQs. The finite dimensionality
follows from the definition as was shown. In this section we will determine possible (finite
dimensional) LAPs of higher degree (i.e.deg≥ 3). Henceforth we use the terminology
LAP for the proper LAP, i.e.non quadratic one, if there is no fear of confusion.

3.1 Two-dimensional LAP g

Since any one dimensional LAP is abelian we first examine the condition for g to be of
dimension two. Let us take

X = (
n∑

k=0

akz
k)(

∂

∂z
) , Y = (

n∑
k=0

bkz
k)(

∂

∂z
)

and ⎛
⎜⎜⎜⎝

bn

bn−1
...
b2

⎞
⎟⎟⎟⎠ = s

⎛
⎜⎜⎜⎝

an

an−1
...
a2

⎞
⎟⎟⎟⎠ .

Then g is 2-dimensional, iff there exist α, β ∈ C such that [X,Y ] = αX + βY . By
comparing the coefficients of each terms, if we assume ai = bi = 0 for i < 1, n < i, we
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have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αan + βbn
...

αan−j + βbn−j
...

αa2 + βb2

αa1 + βb1

αa0 + βb0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α + sβ)an
...

(α + sβ)an−j
...

(α + sβ)a2

αa1 + βb1

αa0 + βb0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
k=1(2k − 1 − n)an−k+1bk

...∑n+j
k=1(2k − j − 1 − n)an−k+1bk−j

...∑2n−2
k=1 (2k − 2n + 1)an−k+1bk−n+2∑2n−1

k=1 (2k − 2n)an−k+1bk−n+1∑2n
k=1(2k − 2n − 1)an−k+1bk−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Here from (1) we have

(α + sβ)an =
n∑

k=1

(2k − 1 − n)an−k+1bk

= (1 − n)anb1 + (n − 1)a1bn

= (1 − n)anb1 + s(n − 1)a1an

= (n − 1)an(sa1 − b1) .

Hence
(α + sβ) = (n − 1)(sa1 − b1). (2)

We have also

(α + sβ)an−j =

n+j∑
k=1

(2k − 1 − n − j)an−k+1bk−j (1 ≤ j ≤ n − 2)

= (j − 1 − n)an−j+1b0 + (j + 1 − n)an−jb1

+ (n + 1 − j)a0bn−j+1 + (n − 1 − j)a1bn−j

= (n + 1 − j)(sa0 − b0)an−j+1 + (n − 1 − j)(sa1 − b1)an−j

(n − 1)(sa1 − b1)an−j = (n + 1 − j)(sa0 − b0)an−j+1 + (n − 1 − j)(sa1 − b1)an−j.

Hence
(n + 1 − j)(sa0 − b0)an−j+1 = j(sa1 − b1)an−j. (3)

Hence from (2),(3), we have

(sa0 − b0)

(sa1 − b1)
=

nan−1

an

= · · · =
jan−j

(n + 1 − j)an−j+1

= · · · =
(n − 2)a2

3a3

= t. (4)

Letting (1) ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

an san

an−1 san−1
...

...
a2 sa2

a1 b1

a0 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
α
β

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cn

cn−1
...
c2

c1

c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5)

4
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we have from (4),
cn

an

=
cn−1

an−1

= · · · =
c2

a2

.

Thus for (5) to have solutions, we must have

det

⎛
⎝an bn (n − 1)(sa1 − b1)an

a1 b1 2(a0b2 − a2b0)
a0 b0 a0b1 − a1b0

⎞
⎠ = 0.

So we have

det

⎛
⎝ 1 s (n − 1)(sa1 − b1)

a1 b1 2(a0b2 − a2b0)
a0 b0 a0b1 − a1b0

⎞
⎠

=b1(a0b1 − a1b0) + 2sa0a2(sa0 − b0) + a1b0(n − 1)(sa1 − b1)

− a0b1(n − 1)(sa1 − b1) − 2a2b0(sa0 − b0) − sa1(a0b1 − a1b0)

=(b1 − sa1)(a0b1 − a1b0) − 2a2(b0 − sa0)(sa0 − b0) + (n − 1)(a0b1 − a1b0)(b1 − sa1)

=n(b1 − sa1)(a0b1 − a1b0) + 2a2(b0 − sa0)
2

=0.

Hence

n(b1 − sa1)(a0b1 − a1b0) + 2a2(b0 − sa0)
2 = 0

2a2(sa0 − b0)
sa0 − b0

sa1 − b1

= n(a0b1 − a1b0)

2a2(sa0 − b0)t = n(a0b1 − a1b0)

na0b1 + (2ta2 − na1)b0 = 2tsa0a2 (6)

Also we have from (4), and from
sa0 − b0

sa1 − b1

= t

b0 = tb1 − s(ta1 − a0) (7)

Hence from (6),(7)

na0b1 + (2ta2 − na1)(tb1 − s(ta1 − a0)) = 2sta0a2

(na0 + 2t2a2 − tna1)b1 = (na0 + 2t2a2 − tna1)sa1.

We have to examine case by case:

(case I) na0 + 2t2a2 − tna1 �= 0

b1 = sa1 and b0 = sa0

5
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Hence we have
Y = sX,

which implies g is one -dimensional.

(case II) na0 + 2t2a2 − tna1 = 0

Then from (6,7) we have(
na0 2ta2 − na1

t −1

) (
b1

b0

)
=

(
2tsa0a2

s(ta1 − a0)

)
.

For this to have solutions we deduce from det

(
na0 2ta2 − na1

t −1

)
= 0, the rank of

(
na0 2ta2 − na1 2tsa0a2

t −1 s(ta1 − a0)

)
(8)

must be 1, where

rank

(
na0 2ta2 − na1 2tsa0a2

t −1 s(ta1 − a0)

)

=rank

(
tna0 2t2a2 − na1t 2t2sa0a2

t −1 s(ta1 − a0)

)

=rank

(
tna0 − tna0 2t2a2 − na1t + na0 2t2sa0a2 − sna0(ta1 − a0)

t −1 s(ta1 − a0)

)

=rank

(
t −1 s(ta1 − a0)
0 0 2t2sa0a2 − sna0(ta1 − a0)

)
.

Hence we have only to verify (if sa0 �= 0)

2t2sa0a2 − stna0a1 + sna2
0 = 0,

which holds whenever na0 + 2t2a2 − tna1 = 0.
Hence the rank of (8) is always one, if na0 + 2t2a2 − tna1 = 0.
Hence from

2t2a2 − tna1 + na0 = 0

tna1 − na0 = 2t2a2

ta1 − a0 =
2t2

n
a2,

we have

b0 = tb1 − s(ta1 − a0)

tb1 − b0 = s(ta1 − a0)

tb1 − b0 =
2t2s

n
a2 (9)

Here we can choose a0, a1, b0, and b1 so that b0 �= sa0, or b1 �= sa1.
Hence we have

6

���������	�
�����������	����


�



Theorem 3.1 The LAP g =< X, Y >C of degree n is two dimensional iff the following
conditions are satisfied:

1. ∃s ∈ C s.t.

⎛
⎜⎜⎜⎝

bn

bn−1
...
b2

⎞
⎟⎟⎟⎠ = s

⎛
⎜⎜⎜⎝

an

an−1
...
a2

⎞
⎟⎟⎟⎠

2. ∃t ∈ C s.t.
an−1

nan

= · · · =
jan−j

(n + 1 − j)an−j+1

= · · · =
(n − 2)a2

3a3

= t

3. na0 + 2t2a2 − tna1 = 0

4. tb1 − b0 =
2t2s

n
a2 (b0 �= sa0 or b1 �= sa1)

As a corollary to the above we can generalize Theorem 2.2 in the following way:

Corollary 3.1 The set S of two dimensional LAPs (of d=deg≥ 3) is in one to one
correspondence with an algebraic surface of the quasi projective variety C

d−1 × CP1

Proof. Let us take generators X = (
∑n

k=0 akz
k)( ∂

∂z
), Y = (

∑n
k=0 bkz

k)( ∂
∂z

) of LAP g of
degree n. We can represent X,Y by the complex vectors a = (a1, . . . , an), b = (b1, . . . , bn).
Then we can assume X or a is monic, i.e., the top coefficient is normalized; an = 1.
Then we can assume (from the linear independence) Y is of deg≤ n− 1. Then from the
first condition we have bn−1 = · · · = b2 = 0. Also we have (b1, b0) ∈ CP

1. The vector
(a, b) virtually represents an element of C

d−1 × CP
1

3.2 Three dimensional LAP g

In the preceding sections we have investigated two dimensional LAP. As for the other
cases we have the following

Theorem 3.2 There are no LAPs of dim ≥ 3.

Proof. Here we prove only the 3-dimensional case. For the other cases the readers are
referred to [3]. now assume the contrary; dimg= 3. Let

X = (
n∑

k=0

akz
k)(

∂

∂z
) , Y = (

n∑
k=0

bkz
k)(

∂

∂z
) , Z = (

n∑
k=0

ckz
k)(

∂

∂z
)

be a base of the vector space g. Then from the assumption [X,Y ], [X,Z], [Y, Z] ∈ g, we
have by the same reasoning in the previous section

∃s, t ∈ C s.t.

⎛
⎜⎝

bn
...
b2

⎞
⎟⎠ = s

⎛
⎜⎝

an
...
a2

⎞
⎟⎠ ,

⎛
⎜⎝

cn
...
c2

⎞
⎟⎠ = t

⎛
⎜⎝

an
...
a2

⎞
⎟⎠ .

From [X,Y ] ∈ g, we have also

∃α, β, γ ∈ C s.t. [X,Y ] = αX + βY + γZ

7
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and letting

[X,Y ] = (
n∑

k=0

dkz
k)

∂

∂z
,

we have ⎛
⎜⎜⎜⎜⎜⎝

an bn cn
...

...
...

a2 b2 c2

a1 b1 c1

a0 b0 c0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝α

β
γ

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

an san tan
...

...
...

a2 sa2 ta2

a1 b1 c1

a0 b0 c0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝α

β
γ

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

dn
...
d2

d1

d0

⎞
⎟⎟⎟⎟⎟⎠

(10)

Since there are α, β, γ satisfying (10), we have

dn

an

=
dn−1

an−1

= · · · =
d2

a2

= (α + sβ + tγ),

and

dn−j =

n+j∑
k=1

(2k − j − 1 − n)an−k+1bk−j (0 ≤ j ≤ n − 2).

Hence we have

dn

an

= (α + sβ + tγ)

(α + sβ + tγ)an =
n∑

k=1

(2k − 1 − n)an−k+1bk

= (n − 1)(sa1 − b1).

Further we have

dn−j

an−j

= (α + sβ + tγ)

(α + sβ + tγ)an−j =

n+j∑
k=1

(2k − 1 − n − j)an−k+1bk−j

= (n + 1 − j)(sa0 − b0)an−j+1 + (n − 1 − j)(sa1 − b1)an−j.

(11)

And so from

(n − 1)(sa1 − b1)an−j = (n + 1 − j)(sa0 − b0)an−j+1 + (n − 1 − j)(sa1 − b1)an−j,

we have
(n + 1 − j)(sa0 − b0)an−j+1 = j(sa1 − b1)an−j

.
Hence

sa0 − b0

sa1 − b1

=
an−1

nan

= · · · =
jan−j

(n + 1 − j)an−j+1

= · · · =
(n − 2)a2

3a3

(12)

8

���������	�
�����������	����


�



Similarly from [X,Z] ∈ g, we have

ta0 − c0

ta1 − c1

=
an−1

nan

= · · · =
jan−j

(n + 1 − j)an−j+1

= · · · =
(n − 2)a2

3a3

(13)

and from [Y, Z] ∈ g we have

tb0 − sc0

tb1 − sc1

=
bn−1

nbn

= · · · =
jbn−j

(n + 1 − j)bn−j+1

= · · · =
(n − 2)b2

3b3

(14)

Hence from (12, 13, 14), we have

sa0 − b0

sa1 − b1

=
ta0 − c0

ta1 − c1

=
tb0 − sc0

tb1 − sc1

= u (15)

Further from (15) we have

sa0 − b0

sa1 − b1

= u and ub1 − b0 = s(ua1 − a0) (16)

ta0 − c0

ta1 − c1

= u and uc1 − c0 = t(ua1 − a0) (17)

Here

det

⎛
⎝an · · · a2 a1 a0

bn · · · b2 b1 b0

cn · · · c2 c1 c0

⎞
⎠ = det

⎛
⎝1 · · · 1 a1 a0

s · · · s b1 b0

t · · · t c1 c0

⎞
⎠

= det

⎛
⎝0 · · · 0 1 a1 a0

0 · · · 0 s b1 b0

0 · · · 0 t c1 c0

⎞
⎠

= det

⎛
⎝1 a1 a0

s b1 b0

t c1 c0

⎞
⎠

= b1c0 + ta1b0 + sa0c1 − ta0b1 − b0c1 − sa1c0

= (sa0 − b0)c1 − (sa1 − b1)c0 + t(a1b0 − a0b1)

From (15) we have sa0 − b0 = u(sa1 − b1)

= u(sa1 − b1)c1 − (sa1 − b1)c0 + t(a1b0 − a0b1)

= (sa1 − b1)(uc1 − c0) + t(a1b0 − a0b1)

= t(sa1 − b1)(ua1 − a0) + t(a1b0 − a0b1) (from(17))

= stua2
1 − sta1a0 − ta1(ub1 − b0)

= stua2
1 − sta1a0 − sta1(ua1 − a0) from(16)

= 0.

Thus it is proved the C vectors a = (an · · · a0), b = (bn · · · b0), and c = (cn · · · c0) are
C-linearly dependent, hence a contradiction. Q.E.D.
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3.3 Structure of two dimensional LAP/Q

Here we remark the structure of two dimensional LAP/Q g: when g is commutative,
solvable, nilpotent? We have mentioned the 3-dimensional case just before: the semisim-
pleness of g. The solvability of two dimensional g is well known for general abstract Lie
algebras. W give only the following remark without proof (see [3] for the details).

Remark 3.1 Every two dimensional LAP g is solvable but never nilpotent irrespective
of its degree.

4 Concluding remarks

The CR version of the corresponding theory might be formulated, but there seem few
works to exist in this direction except [1, 5, 6, 10, 11]. We can also consider similar
problems in the complex affine or projective spaces of higher dimension. One could
obtain some interesting results in this direction, which might give non-trivial examples
non-linear rational or geomorphic actions there.
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