Theorems for the \boldsymbol{n} dimensional simplex

which are generalizations of Ceva＇s theorem on the triangle

Kazuyuki HATADA
Department of Mathematics，Faculty of Education，Gifu University
1－1，Yanagido，Gifu City，GIFU 501－1193，Japan

Abstract

We show other generalizations of Ceva＇s theorem on the triangle to the n dimensional simplex than the theorems given in［2］．They are Theorems 1．1，1．2， 2.1 and 3.1 below．

Let n be any integer >2 ．Let $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ denote an arbitrary n dimensional simplex in Euclidean space \mathbf{R}^{n} ，whose vertices are $\left\{\mathrm{P}_{j} \mid 0 \leq j \leq n\right\}$ ．Let μ denote the standard Euclidean measure（＝volume）on \mathbf{R}^{n} ．Let m denote the standard Euclidean measure on \mathbf{R}^{n-1} ．Let T be any point in the interior of $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ ．For each integer j with $0 \leq j \leq n$ ， write $C_{j}=\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, x \neq j\right\}$ ．For each integer j with $0 \leq j \leq n$ ，let H_{j} denote the $n-1$ dimensional hyper－plane containing all the points in C_{j} ．For each integer j with $0 \leq j \leq n$ ，let P_{j}^{\prime} denote the point of the intersection of line $\mathrm{P}_{j} \mathrm{~T}$ and hyper－plane H_{j} ．For arbitrary finite points $\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}$ in Euclidean space \mathbf{R}^{n} ，let $<\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}>$ denote the minimum closed convex subset，of \mathbf{R}^{n} ，containing all the points $\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}$.

Section 1．Case of any integer $n \geq 2$ ．

Recall that $P_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ denote an arbitrary n dimensional simplex in Euclidean space \mathbf{R}^{n} ，whose vertices are $\left\{\mathrm{P}_{j} \mid 0 \leq j \leq n\right\}$ ．Let j be any integer with
$0 \leq j \leq n$. Recall $C_{j}=\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, x \neq j\right\}$. Let r be any positive integer ≥ 2. Let $\left\{k_{u}\right\}_{u=1}^{r}$ be any sequence of positive integers with $n+1=\sum_{u=1}^{r} k_{u}$ and $k_{u} \geq k_{u+1} \geq 2$ for all the integers $1 \leq u \leq r-1$. For each integer j with $0 \leq j \leq k_{1}-2$, write $E_{j}=C_{j} \cap C_{j+1}$. Write $E_{k_{1}-1}=C_{k_{1}} \cap C_{0}$. For each integer j with $k_{1} \leq j \leq k_{1}+k_{2}-2$, write $E_{j}=C_{j} \cap C_{j+1}$. Write $E_{k_{1}+k_{2}-1}=C_{k_{1}+k_{2}-1} \cap C_{k_{1}}$. Let s be any integer with $1 \leq s \leq r-1$. For each integer j with $\sum_{u=1}^{s} k_{u} \leq j \leq \sum_{u=1}^{s+1} k_{u}-2$, write $E_{j}=C_{j} \cap C_{j+1}$. Put $a_{s}=\sum_{u=1}^{s+1} k_{u}$. Write $E_{a_{s}-1}=C_{a_{s}-1} \cap C_{a_{s-1}}$. Here we put $a_{0}=k_{1}$. So, we have $\left\{E_{j} \mid 0 \leq j \leq n\right\}$. For each $0 \leq j \leq n$ write $\Upsilon_{j}=\left\{S\left|S \subset C_{j},|S|=n-1, S \neq E_{j}\right\} . \quad\right.$ Then we have $\left|\Upsilon_{j}\right|=n-1$. We obtain

Theorem 1.1. $\prod_{j=0}^{n}\left(\frac{\prod_{\xi \in Y_{j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup E_{j}>\right)^{n-1}}\right)=1$.

Proof of Theorem 1.1. By the same way as in the proof of Theorem 2 in [2] we have
$\frac{\prod_{\xi \in \mathrm{Y}_{j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup E_{j}>\right)^{n-1}}=\frac{\prod_{\xi \in \mathrm{Y}_{j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)}{\mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup E_{j}>\right)^{n-1}}$.
We obtain $\prod_{j=0}^{n}\left(\prod_{\xi \in \mathrm{Y}_{j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)\right)=\prod_{j=0}^{n} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup E_{j}>\right)^{n-1}$.
Theorem 1.1 is proven.

Theorem 1 in [2] is the case of $r=1$ of the above Theorem 1.1.

Corollary of Theorem 1.1. Let $\tau=\left(\begin{array}{ccccc}0 & 1 & 2 & \cdots & n \\ \tau(0) & \tau(1) & \tau(2) & \cdots & \tau(n)\end{array}\right)$ be any element of S_{n+1}. Rewrite P_{j} for $\mathrm{P}_{\tau(j)}$ with all $0 \leq j \leq n$ and P_{j}^{\prime} for $\mathrm{P}_{\tau(j)}^{\prime}$ with all $0 \leq j \leq n$. Then apply Theorem 1.1. Then we have the equation for simplex $\mathrm{P}_{\tau(0)} \mathrm{P}_{\tau(1)} \mathrm{P}_{\tau(2)} \cdots \mathrm{P}_{\tau(n)}$.
(We have simplex $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}=\mathrm{P}_{\tau(0)} \mathrm{P}_{\tau(1)} \mathrm{P}_{\tau(2)} \cdots \mathrm{P}_{\tau(n)}$. We can consider Theorem 1.1 for any order $\left.\left(\mathrm{P}_{\tau(0)}, \mathrm{P}_{\tau(1)}, \mathrm{P}_{\tau(2)}, \cdots, \mathrm{P}_{\tau(n)}, \mathrm{P}_{\tau(0)}\right).\right)$

We obtain also

Theorem 1.2. Let $\sigma=\left(\begin{array}{ccccc}0 & 1 & 2 & \cdots & n \\ \sigma(0) & \sigma(1) & \sigma(2) & \cdots & \sigma(n)\end{array}\right)$ be any element of S_{n+1} that satisfies $\sigma(j) \neq j$ for all the integers $0 \leq j \leq n$. For any $0 \leq j \leq n$, put $F_{\sigma, j}=\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, x \neq j, x \neq \sigma(j)\right\}, \quad \Delta_{\sigma, j}=<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup F_{\sigma, j}>$, and $\Xi_{\sigma, j}=\left\{S\left|S \subset C_{j},|S|=n-1, S \neq F_{\sigma, j}\right\}\right.$. Then we have $\prod_{j=0}^{n}\left(\frac{\prod_{\xi \in \Xi_{\sigma, j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(\Delta_{\sigma, j}\right)^{n-1}}\right)=1$.

Proof of Theorem 1.2. By the same way as in the proof of Theorem 2 in [2] we have

$$
\frac{\prod_{\xi \in \xi_{\sigma, j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(\Delta_{\sigma, j}\right)^{n-1}}=\frac{\prod_{\xi \in \Xi_{\sigma, j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)}{\mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \bigcup\left\{\mathrm{P}_{x} \mid 0 \leq j \leq n, x \neq j, x \neq \sigma(j)\right\}>\right)^{n-1}} .
$$

We obtain

$$
\prod_{j=0}^{n}\left(\prod_{\xi \in \Xi_{\sigma, j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)\right)=\prod_{j=0}^{n} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup\left\{\mathrm{P}_{x} \mid 0 \leq j \leq n, x \neq j, x \neq \sigma(j)\right\}>\right)^{n-1} .
$$

Theorem 1.2 is proven. (Remark. We have easily $\left|\Xi_{\sigma, j}\right|=n-1$ for any $0 \leq j \leq n$.)

Any element of S_{n+1} is expressed uniquely as a product of cyclic substitutions any two of which have disjoint letters. So, if we renumber $\left\{\mathrm{P}_{j}\right\}_{j=0}^{n}$ suitably for each σ, Theorem 1.2 has the same expression that Theorem 1.1 has.

For each n dimensional simplex $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$, the number of the equations given in Theorem 1.2 is equal to $d_{n+1}=\#\left\{\sigma \in S_{n+1} \mid \sigma(j) \neq j\right.$ for any $\left.0 \leq j \leq n\right\}$. Namely the number of the generalizations of Theorem 1.1 type of Ceva's theorem on the triangle to simplex
$\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ is equal to d_{n+1}. It is well known that $d_{n+1}=(n+1)!\left(\sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!}\right)$.

Example. Let $n=3$. We have $d_{4}=9$. There are 9 equations of Theorem 1.1 type for any tetrahedron $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$. The substitutions to consider are the following. As σ in Theorem 1.2, we have (0123), (0132), (0213), (0231), (0312), (0321), (01)(23), (02)(13), (03)(12). The cases of $(0123),(0132),(0213),(0231),(0312)$ and (0321) are treated in Theorem 1 in [1]. The cases of $(01)(23),(02)(13)$ and $(03)(12)$ are treated in Theorem 2 in [1].

One may say that there are only 9 generalizations of Ceva's theorem of the triangle to the tetrahedron.

Section 2. Theorem of another type for any integer $n>2$.

Let n be any integer >2. Let $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ be any n dimensional simplex with vertices $\left\{\mathrm{P}_{j}\right\}_{j=0}^{n}$ in \mathbf{R}^{n}. Let T be any point in the interior of $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$. Let b be any integer larger than 1. Let $\left\{\mathrm{U}_{j}\right\}_{j=0}^{b}$ be such any sequence of points in \mathbf{R}^{n} that $\mathrm{U}_{j} \in\left\{P_{x} \mid 0 \leq x \leq n\right\}$ for all the integers j with $0 \leq j \leq b$, that $\mathrm{U}_{j} \neq \mathrm{U}_{j+1}$ for all the integers j with $0 \leq j \leq b-1$ and that $\mathrm{U}_{0}=\mathrm{U}_{b}$. Then let $\mathrm{I}(j, j+1)$ denote the intersection point of the line $\mathrm{U}_{j} \mathrm{U}_{j+1}$ and (the hyper-plane $\left.\supset\left(\{T\} \bigcup\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, \mathrm{P}_{x} \neq \mathrm{U}_{j}, \mathrm{P}_{x} \neq \mathrm{U}_{j+1}\right\}\right)\right)$ for each integer $j \in[0, b-1]$. For arbitrary points P and Q in \mathbf{R}^{n} we write $d(\mathrm{P}, \mathrm{Q})=\|\overrightarrow{\mathrm{PQ}}\|$. Notations being as above we obtain

Theorem 2.1. $\quad \prod_{j=0}^{b-1} \frac{d\left(\mathrm{I}(j, j+1), \mathrm{U}_{j+1}\right)}{d\left(\mathrm{U}_{j}, \mathrm{I}(j, j+1)\right)}=1$.

Proof of Theorem 2.1. First we treat the case of $b=3$. Let π_{0} be the minimum \mathbf{R}-linear
submanifold in \mathbf{R}^{n} containing T and all the points in $\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, \mathrm{P}_{x} \neq \mathrm{U}_{0}, \mathrm{P}_{x} \neq \mathrm{U}_{1}, \mathrm{P}_{x} \neq \mathrm{U}_{2}\right\}$. Let π_{0}^{\prime} be the minimum \mathbf{R}-linear submanifold in \mathbf{R}^{n} containing $T, \mathrm{U}_{0}, \mathrm{U}_{1}$ and U_{2}. Note that the dimension of π_{0} is $n-2$ and that the dimension of π_{0}^{\prime} is 3 . We have $\pi_{0} \cap \pi_{0}^{\prime}$ is a line (namely \mathbf{R}-linear submanifold of dimension 1). Let Q_{0} be the intersection point of π_{0} and the plane containing U_{0}, U_{1} and U_{2}. Then the lines $\mathrm{U}_{0} \mathrm{I}(1,2), \mathrm{U}_{1} \mathrm{I}(2,3)$ and $\mathrm{U}_{2} \mathrm{I}(0,1)$ intersect at the point Q_{0}. So, we can apply Ceva's theorem to the triangle $\mathrm{U}_{0} \mathrm{U}_{1} \mathrm{U}_{2}$. We have Theorem 2.1 for $b=3$.

Now assume Theorem 2.1 is true for $b=$ some integer $k \geq 3$. Then we consider the case of $b=k+1$.

We have $\mathrm{U}_{k+1}=\mathrm{U}_{0}$. If $\mathrm{U}_{k-1}=\mathrm{U}_{k+1}$, this case resolves itself into the case of $b=k$ since $I(k-1, k)=I(k, k+1)$. So, we assume $\mathrm{U}_{k-1} \neq \mathrm{U}_{k+1}$. Let I denote the intersection point of the line $\mathrm{U}_{k-1} \mathrm{U}_{k+1}$ and (the hyper-plane $\left.\supset\left(\{\mathrm{T}\} \bigcup\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, \mathrm{P}_{x} \neq \mathrm{U}_{k-1}, \mathrm{P}_{x} \neq \mathrm{U}_{k+1}\right\}\right)\right)$. By the case of $b=k$, we have $\frac{d\left(\mathrm{I}, \mathrm{U}_{k+1}\right)}{d\left(\mathrm{U}_{k-1}, \mathrm{I}\right)} \prod_{j=0}^{k-2} \frac{d\left(\mathrm{I}(j, j+1), \mathrm{U}_{j+1}\right)}{d\left(\mathrm{U}_{j}, \mathrm{I}(j, j+1)\right)}=1$. Let π be the minimum \mathbf{R}-linear submanifold in \mathbf{R}^{n} containing T and all the points in $\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, \mathrm{P}_{x} \neq \mathrm{U}_{k-1}, \mathrm{P}_{x} \neq \mathrm{U}_{k}, \mathrm{P}_{x} \neq \mathrm{U}_{k+1}\right\}$. Let π^{\prime} be the minimum \mathbf{R}-linear submanifold in \mathbf{R}^{n} containing $\mathrm{T}, \mathrm{U}_{k-1}, \mathrm{U}_{k}$ and U_{k+1}. Note that the dimension of π is $n-2$ and that the dimension of π^{\prime} is 3 . We have $\pi \cap \pi^{\prime}$ is a line (namely \mathbf{R}-linear submanifold of dimension 1). Let Q be the intersection point of π and the plane containing $\mathrm{U}_{k-1}, \mathrm{U}_{k}$ and U_{k+1}. Then the lines $\mathrm{U}_{k-1} \mathrm{I}(k, k+1), \mathrm{U}_{k} \mathrm{I}$ and $\mathrm{U}_{k+1} \mathrm{I}(k-1, k)$ intersect at the point Q . Apply Ceva's theorem to the triangle $\mathrm{U}_{k-1} \mathrm{U}_{k} \mathrm{U}_{k+1}$. We have $\frac{d\left(\mathrm{I}, \mathrm{U}_{k+1}\right)}{d\left(\mathrm{U}_{k-1}, \mathrm{I}\right)}=\frac{\left.d\left(\mathrm{I}(k-1, k), \mathrm{U}_{k}\right)\right)}{d\left(\mathrm{U}_{k-1}, \mathrm{I}(k-1, k)\right)} \cdot \frac{\left.d\left(\mathrm{I}(k, k+1), \mathrm{U}_{k+1}\right)\right)}{d\left(\mathrm{U}_{k}, \mathrm{I}(k, k+1)\right)} . \quad$ Hence $\frac{\left.d\left(\mathrm{I}(k-1, k), \mathrm{U}_{k}\right)\right)}{d\left(\mathrm{U}_{k-1}, \mathrm{I}(k-1, k)\right)} \cdot \frac{\left.d\left(\mathrm{I}(k, k+1), \mathrm{U}_{k+1}\right)\right)}{d\left(\mathrm{U}_{k}, \mathrm{I}(k, k+1)\right)} \prod_{j=0}^{k-2} \frac{d\left(\mathrm{I}(j, j+1), \mathrm{U}_{j+1}\right)}{d\left(\mathrm{U}_{j}, \mathrm{I}(j, j+1)\right)}=1 . \quad$ Namely
$\prod_{j=0}^{k} \frac{d\left(\mathrm{I}(j, j+1), \mathrm{U}_{j+1}\right)}{d\left(\mathrm{U}_{j}, \mathrm{I}(j, j+1)\right)}=1$. The case of $b=k+1$ is proven. Theorem 2.1 is proven.
(The case of $b=2$ is trivial.)

Section 3. Case of $n=4$.

The following theorem is different from Theorems 1.1 and 1.2 in this paper and Theorem 2 in [2]. We obtain

Theorem 3.1. Let $n=4$. One has

```
\(\frac{m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)}{m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right)} \cdot \frac{m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{3}\right) m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right)}{m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{4}\right)}\).
\(\frac{m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{1} \mathrm{P}_{4}\right)}{m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{1}\right)} \cdot \frac{m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{1}\right) m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{2}\right)}{m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right) m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{2}\right)} \cdot \frac{m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right) m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right)}{m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right) m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right)}\)
```

$=1$.

Proof of Theorem 3.1. We use

$$
\text { If } a: b: c: d=t: u: v: w=w: x: y: z \text {, then } a: b: c: d=t-w: u-x: v-y: w-z \text {. }
$$

Using that and computing volumes of 4 dimensional simplexes we have

```
m(\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}):m(\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{})
= \mu( ( }\mp@subsup{}{0}{0}\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}):\mu(\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{0}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}
= \mu(T\mp@subsup{P}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{0}{\prime}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}):\mu(\mp@subsup{\textrm{TP}}{0}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{})
= \mu(T\mp@subsup{P}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}):\mu(\mp@subsup{\textrm{TP}}{0}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}).
```

By the same method,

```
m( }\mp@subsup{\textrm{P}}{1}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{3}{}):m(\mp@subsup{\textrm{P}}{1}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{1}{\prime}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{1}{\prime}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}
= \mu(T\mp@subsup{P}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{3}{}):\mu(\mp@subsup{\textrm{TP}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{1}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{1}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{4}{}),
m(\mp@subsup{\textrm{P}}{2}{\prime}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{1}{}):m(\mp@subsup{\textrm{P}}{2}{\prime}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{2}{\prime}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{4}{}):m(\mp@subsup{\textrm{P}}{2}{\prime}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{4}{})
= \mu(T\mp@subsup{P}{2}{}\mp@subsup{P}{3}{}\mp@subsup{P}{0}{}\mp@subsup{P}{1}{}):\mu(T\mp@subsup{P}{2}{}\mp@subsup{P}{3}{}\mp@subsup{P}{0}{}\mp@subsup{\textrm{P}}{4}{}):\mu(T\mp@subsup{P}{2}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{4}{}):\mu(\mp@subsup{\textrm{TP}}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{4}{}),
m(\mp@subsup{\textrm{P}}{3}{\prime}\mp@subsup{\textrm{P}}{4}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{1}{}):m(\mp@subsup{\textrm{P}}{3}{\prime}\mp@subsup{\textrm{P}}{4}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{2}{}):m(\mp@subsup{\textrm{P}}{3}{\prime}\mp@subsup{\textrm{P}}{4}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{}):m(\mp@subsup{\textrm{P}}{3}{\prime}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{P}}{1}{}\mp@subsup{\textrm{P}}{2}{})
= \mu(T\mp@subsup{P}{3}{}\mp@subsup{P}{4}{}\mp@subsup{P}{0}{}\mp@subsup{P}{1}{}):\mu(T\mp@subsup{P}{3}{}\mp@subsup{P}{4}{}\mp@subsup{P}{0}{}\mp@subsup{P}{2}{}):\mu(T\mp@subsup{P}{3}{}\mp@subsup{P}{4}{}\mp@subsup{P}{1}{}\mp@subsup{P}{2}{}):\mu(T\mp@subsup{P}{3}{}\mp@subsup{P}{0}{}\mp@subsup{P}{1}{}\mp@subsup{P}{2}{}),
```

and
$m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$
$=\mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$.

For simplicity, write
$A=\mu\left(\mathrm{TP}_{0} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right), B=\mu\left(\mathrm{TP}_{1} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right), C=\mu\left(\mathrm{TP}_{2} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{4}\right), D=\mu\left(\mathrm{TP}_{3} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right)$ and $E=\mu\left(\mathrm{TP}_{4} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$.
Then the left side of the equation in Theorem 3.1 is equal to

$$
\frac{C D}{A B} \cdot \frac{D E}{B C} \cdot \frac{A E}{C D} \cdot \frac{B A}{D E} \cdot \frac{C B}{E A}=\frac{A^{2} B^{2} C^{2} D^{2} E^{2}}{A^{2} B^{2} C^{2} D^{2} E^{2}}=1 .
$$

Theorem 3.1 is proven.

Since Theorem 3.1 holds true for any 4 dimensional simplex, we have

Corollary of Theorem 3.1. Let $\sigma=\left(\begin{array}{ccccc}0 & 1 & 2 & 3 & 4 \\ \sigma(0) & \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4)\end{array}\right)$ be any element of S_{5}. One can replace P_{j} by $\mathrm{P}_{\sigma(j)}$ for any $0 \leq j \leq 4$ and P_{j}^{\prime} by $\mathrm{P}_{\sigma(j)}^{\prime}$ for any $0 \leq j \leq 4$ in the equation of Theorem 3.1.

Theorem 3.1 shows that Theorems 1.1 and 1.2 in Section 1 do not cover all possible generalizations of Ceva's theorem on the triangle to n dimensional simplexes with $n \geq 4$.

References

[1] K. Hatada, Generalization of Ceva's theorem on the triangle to the tetrahedron, Sci. Rep. Fac. Educ. Gifu Univ. (Nat. Sci.), 31, (2007), 7-9.
[2] K. Hatada, Generalization of Ceva's theorem to the n dimensional simplex, Sci. Rep. Fac. Educ. Gifu Univ. (Nat. Sci.), 32, (2008), 9-12.

