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Theorems for the » dimensional simplex

which are generalizations of Ceva’s theorem on the triangle

Kazuyuki HATADA
Department of Mathematics, Faculty of Education, Gifu University
1-1, Yanagido, Gifu City, GIFU 501-1193, Japan

Abstract. We show other generalizations of Ceva’s theorem on the triangle to the »
dimensional simplex than the theorems given in [2]. They are Theorems 1.1, 1.2, 2.1 and 3.1
below.

Let n be any integer>2. Let P,P,P,---P, denote an arbitrary » dimensional simplex in

Euclidean space R", whose vertices are {P,|0<;j<n}. Let u denote the standard

Euclidean measure (=volume) on R”. Let m denote the standard Euclidean measure on

R"". Let T be any point in the interior of P,P,P,---P,. For each integer j with 0< j<n,
write C, ={P [0<x<n,x#j}. For each integer ; with 0<;j<n, let H, denote the
n—1 dimensional hyper-plane containing all the points in C,. For each integer ; with
0<j<n,let P; denote the point of the intersection of line P, T and hyper-plane H . For
arbitrary finite points {V,[1< j<k} in Euclidean space R",let <{V,|1<j<k}> denote

the minimum closed convex subset, of R”, containing all the points {V, [1< j <k} .

Section 1. Case of any integer n > 2.

Recall that P/PP,---P, denote an arbitrary » dimensional simplex in

Euclidean space R", whose vertices are {P,|0<j<n}.Let j be any integer with
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0<j<n Recall C,={P |0<x<n,x=j}. Let r be any positive integer>2. Let
{k,}'_, be any sequence of positive integers with n+1= Z;Zl k, and k, 2k, 22
for all the integers 1<u<r-1. For each integer ; with 0< <k -2, write
E,=C,NC,,. Write E_,=C, 1C,. For each integer j with k <<k +k, -2,
write E,=C,NC,,. Write E_, =C,, C, . Let s be any integer with
1<s<r-l. For each integer ; with Zzzlku Sjﬁz;:llku—% write E,=C,NC,,,.

Put a, = "'k, . Write E, ,=C, ,NC, . Here we put a,=k. So, we have

u=l U

{E,]10<j<n}. For each 0<j<n write Y,={S[ScC,|S|=n-1,S#E;}. Then

we have | Y, |=n—1. We obtain

[[m(<P3US>)

| ger
Theorem 1.1. :
g m(<{P}UE, >)"!

Proof of Theorem 1.1. By the same way as in the proof of Theorem 2 in [2] we have
[[m<P3USE>) [T a<A{T, P UE>)

§€Y./ _ ":EY./'

m(<{PIUE, >)""  u(<{T,PIUE, >)""

We obtain ll[(H,u(<{T,PJ}U§>))=ﬁy(<{T,PJ}UEj >y

Jj=0 SeY;

Theorem 1.1 is proven.

Theorem 1 in [2] is the case of »=1 of the above Theorem 1.1.

0 1 2

Corollary of Theorem 1.1. Let 7= "
7(0) (1) z(2) -+ 7(n)

j be any element of S, .,.

Rewrite P, for P, with all 0<j<n and P for P/ with all 0<j<n. Then apply

Theorem 1.1. Then we have the equation for simplex P, P, P, P .
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(We have simplex P,PP,---P,=P_ (P P, P, .

order (P‘[(O) ’Pr(l) 5Pr(2) >t ’Pr(n) aPT(O)) )

We obtain also

0 1 2 - n

Theorem 1.2. Let 0:(
c0) o) o2) -+ o(n)

satisfies o(j)# ] for all the integers 0<j<n . For any 0<j<n ,

F,, ={P.|0<x<n,x#j,x#0())}, A, =<{P}UF, >, and
E,;={8|ScC;,|Sl=n-1,S=F,;}. Thenwe have
A TT m(<PUE>)
§eEU,]-
IT - 1.
m(A, ;)"

J=0

Proof of Theorem 1.2. By the same way as in the proof of Theorem 2 in [2] we have

[ m<P3UE>) [T #(<(T, P UE>)
§eE,; _ $€Es,
m(A, )" (< AT, PIUP [0<j<nx# j,x#0(j)}>)""
We obtain

[TCTT at< T PAUES) =] [ (< T, PIULR, 05 j < x jox 20 (i)i>)"

Jj=0 ¢&eE, ;

Theorem 1.2 is proven. (Remark. We haveeasily |E_ ;[=n—1 forany 0<j<n.)

We can consider Theorem 1.1 for any

j be any element of S, that

put

Any element of S ., is expressed uniquely as a product of cyclic substitutions any two of

which have disjoint letters. So, if we renumber {P;}’_; suitably for each o, Theorem 1.2

has the same expression that Theorem 1.1 has.

For each » dimensional simplex PPP,---P , the number of the equations given in

Theorem 1.2 isequalto d ,, =#{ceS,,  |o(j)# jforany 0< j<n}.Namely the number of

the generalizations of Theorem 1.1 type of Ceva’s theorem on the triangle to simplex
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k
P,PP,---P isequalto d ,.Itis well known that d , =(n+ I)V(ZZL%)

Example. Let n=3. We have d, =9. There are 9 equations of Theorem 1.1 type for any

tetrahedron PP P,P,. The substitutions to consider are the following. As o in Theorem

1.2, we have (0123), (0132), (0213), (0231), (0312), (0321), (01)(23), (02)(13), (03)(12).
The cases of (0123), (0132), (0213), (0231), (0312) and (0321) are treated in Theorem 1 in [1].
The cases of (01)(23), (02)(13) and (03)(12) are treated in Theorem 2 in [1].

One may say that there are only 9 generalizations of Ceva’s theorem of the triangle to the
tetrahedron.

Section 2. Theorem of another type for any integer n>2 .

Let n be any integer>2. Let P,PP,---P be any » dimensional simplex with vertices
{P,}'o in R" Let T be any point in the interior of PPP,---P,. Let b be any integer
larger than 1. Let {U j}'j;o be such any sequence of points in R" that
U, e{P [0<x<n} for all the integers J with 0<,j<b that U,#U,, for all the
integers J with 0<j<b-1 and that Uy=U,. Then let I(j,/+1) denote the
intersection point of the line U,u,., and (the
hyper-plane © ({T}U{P, [0<x<n,P #U P #U_ })) for each integer J€[0,6-1].

For arbitrary points P and Q in R" we write d(P,Q)ZHQH. Notations being as
above we obtain
2 d(I(j9j+1)7Uj+l) =1

Theorem 2.1. -
H d(U ,1(j,j+D)

Proof of Theorem 2.1. First we treat the case of b=3_Let 7, be the minimum R -linear
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submanifold in R" containing T and all the points in

{P10<x<mP #U,,P #U,P #U,} Let 7, bethe minimum R -linear submanifold in

R" containing T, U,, U, and U, Note that the dimension of 7, is n—2 and that the

dimension of 7; is 3. We have 7z,(\z, is a line (namely R -linear submanifold of

dimension 1). Let Q, be the intersection point of 7, and the plane containing Uy, U,
and U,. Then the lines U l(1,2), UI(2,3) and U,I0,1) intersect at the point Q. So,

we can apply Ceva’s theorem to the triangle U,U,U, .  We have Theorem 2.1 for b=3.

Now assume Theorem 2.1 is true for ® =some integer & =3. Then we consider the case
of b=k+1.

We have U,,,=U,. 1f U, , =U,,,, this case resolves itself into the case of b=k since

I(k—Lk)=1(k,k+1). So,weassume U, #U,, .Let I denote the intersection point of
the line U, U, and (the hyper-plane> ({T}U{P, [0<x<n,P =U, ,P #U, })). By

dLU,.) 7790, j+D. U,
d(Uk_pI) j=0 d(UJ,I(],]“r‘I)) .

the case of b=k  we have Let 7 be the minimum

R-linear  submanifold in R" containing T and all the points in

{P10<x<mP #U, P #U,,P 2U, } Let 7' bethe minimum R -linear submanifold

k> x

in R"” containing T, U, ,,U, and U,,, . Note that the dimension of # is n—2 and that

the dimension of 7z’ is 3. We have #()z' is a line (namely R -linear submanifold of

dimension 1). Let Q be the intersection point of 7Z and the plane containing U, ;,» U, and
U..- Then the lines U, I(k,k+1) Ul and U, I(k-Lk) intersect at the point Q.

Apply  Ceva’s  theorem to the triangle U, UU,, . We have

d(l,U;.,) _ dk-1,k),U,)) d(1kk+1)U,))
d(U,_,I) d(U_,I(k-1,k) d(U,I(kk+1)

Hence

d(I(k=16).U,)) d((kk+D.U,.0)) 779007 +D.U )
d(Uy,l(k=10))  d(U,1(kk+1) G d(UIG, j+1)

Namely
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ﬁda(j,jﬂ),u,»“)_l o bkl " -
.. — L. € casec O - 1S proven. eorem 2.1 1S proven.
5 d(U 1), +1) P P

(The case of b=2 is trivial.)

Section 3. Caseof n=4.

The following theorem is different from Theorems 1.1 and 1.2 in this paper and Theorem 2
in [2]. We obtain

Theorem 3.1. Let n=4. One has

m(PiP,P,P)m(P;PP,P;) ) m(PP,P P )m(PP,P;P,) )

m(PgP,P,P,)m(P;P,P,P,) m(PP,P;P,)m(PP,PP,)

m(P,P,P,P,)m(P,P;PP,) . m(P;P, P, P, )m(P;P,PP,) . m(P,P,P,P,)m(P,P P P;)
m(P,P,PP,)m(P;P,PP,) m(P;PP,P,)m(P;P,PP,) m(P,PP,P;)m(P,PP,P;)
=1.

Proof of Theorem 3.1. We use
If a:b:c:d=t:u:viw=w:x:y:z,then a:b:c:d=t—-w:u—x:v-y:w—-z.
Using that and computing volumes of 4 dimensional simplexes we have
m(PP,P;P,) : m(PP,P,P,) : m(P;P,P,P;) : m(P P,P;P,)
= u(P PP P,P,) 1 u(PPPP,P, ) : pu(P PP P,Py) : pu(P PGP, PP,)
= u(TPPP,P,): pu(TPPP,P,) : u(TP;P,P,P;): p1(TP;P,PP,)
=u(TPPPP,): (TP P P,P,) : (TP PP,Py) : 11(TP P,P;P,).
By the same method,
m(P/P,PP;) : m(PP,P,P,) : m(PP,P;P,) : m(PP,P,P, )
=u(TPP,PPy) : (TP P,PP,) : (TPP,PP,) : (TP P;P)),

m(P,P;PP) : m(P;P,P,P,) : m(P;P,P,P,) : m(P,P,P,P,)
=u(TP,P,PP) : (TP, P,PP,) : u(TP, PP P,) : (TP, PP P,),

m(P;P,P,P,) : m(P;P,P,P,) : m(P;P,P,P,) : m(P;P,PP,)
=u(TP,P,P,P,): u(TP,P,P,P,) : o(TP,P,PP,) : u(TP,P P P,),
and

m(P,P,P,P,) : m(P,P,P,P;) : m(P,P,P,P;) : m(P,P P, P;)
=u(TP,P,PP,): pu(TP,P PP;): u(TP, P P,P;): (TP, PP, P;).
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For simplicity, write
A= u(TP,P,P.P,), B= u(TPP,P,P,), C = u(TP,P,PP,), D= u(TP,PPP,) and E = u(TP,PP,P,).
Then the left side of the equation in Theorem 3.1 is equal to

CD DE AE BA CB _A’B’C’D’E’ _
AB BC CD DE EA A’B’C’D’E’

Theorem 3.1 is proven.

Since Theorem 3.1 holds true for any 4 dimensional simplex, we have

0 1 2 3 4

Corollary of Theorem 3.1. Let o=
a(0) o) o(2) o) o4

j be any element of

Ss. One can replace P, by P, . for any 0< j<4 and P; by P_ . for any 0< j<4 in the

equation of Theorem 3.1.

Theorem 3.1 shows that Theorems 1.1 and 1.2 in Section 1 do not cover all possible
generalizations of Ceva’s theorem on the triangle to » dimensional simplexes with n>4.
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