Theorems for the *n* dimensional simplex

which are generalizations of Ceva's theorem on the triangle

Kazuyuki HATADA Department of Mathematics, Faculty of Education, Gifu University 1-1, Yanagido, Gifu City, GIFU 501-1193, Japan

Abstract. We show other generalizations of Ceva's theorem on the triangle to the n dimensional simplex than the theorems given in [2]. They are Theorems 1.1, 1.2, 2.1 and 3.1 below.

Let *n* be any integer>2. Let $P_0P_1P_2\cdots P_n$ denote an arbitrary *n* dimensional simplex in Euclidean space \mathbb{R}^n , whose vertices are $\{P_j | 0 \le j \le n\}$. Let μ denote the standard Euclidean measure (=volume) on \mathbb{R}^n . Let *m* denote the standard Euclidean measure on \mathbb{R}^{n-1} . Let T be any point in the interior of $P_0P_1P_2\cdots P_n$. For each integer *j* with $0 \le j \le n$, write $C_j = \{P_x | 0 \le x \le n, x \ne j\}$. For each integer *j* with $0 \le j \le n$, let H_j denote the *n*-1 dimensional hyper-plane containing all the points in C_j . For each integer *j* with $0 \le j \le n$, let P'_j denote the point of the intersection of line P_jT and hyper-plane H_j . For arbitrary finite points $\{V_j | 1 \le j \le k\}$ in Euclidean space \mathbb{R}^n , let $\{V_j | 1 \le j \le k\}$.

Section 1. Case of any integer $n \ge 2$.

Recall that $P_0P_1P_2\cdots P_n$ denote an arbitrary *n* dimensional simplex in Euclidean space \mathbb{R}^n , whose vertices are $\{P_j | 0 \le j \le n\}$. Let *j* be any integer with
$$\begin{split} &0\leq j\leq n. \mbox{ Recall } C_{j}=\{\mathsf{P}_{x}\mid 0\leq x\leq n, x\neq j\}. \mbox{ Let } r \mbox{ be any positive integer}\geq 2. \mbox{ Let } \\ &\{k_{u}\}_{u=1}^{r} \mbox{ be any sequence of positive integers with } n+1=\sum_{u=1}^{r}k_{u} \mbox{ and } k_{u}\geq k_{u+1}\geq 2 \\ &\text{for all the integers } 1\leq u\leq r-1. \mbox{ For each integer } j \mbox{ with } 0\leq j\leq k_{1}-2, \mbox{ write } \\ &E_{j}=C_{j}\cap C_{j+1}. \mbox{ Write } E_{k_{1}-1}=C_{k_{1}}\cap C_{0}. \mbox{ For each integer } j \mbox{ with } k_{1}\leq j\leq k_{1}+k_{2}-2, \\ &\text{write } E_{j}=C_{j}\cap C_{j+1}. \mbox{ Write } E_{k_{1}+k_{2}-1}=C_{k_{1}+k_{2}-1}\cap C_{k_{1}}. \mbox{ Let } s \mbox{ be any integer with } \\ &1\leq s\leq r-1. \mbox{ For each integer } j \mbox{ with } \sum_{u=1}^{s}k_{u}\leq j\leq \sum_{u=1}^{s+1}k_{u}-2, \\ &\text{write } E_{j}=C_{j}\cap C_{j+1}. \mbox{ Write } E_{a_{s}-1}=C_{a_{s}-1}\cap C_{a_{s-1}}. \mbox{ Here we put } a_{0}=k_{1}. \mbox{ So, we have } \\ &\{E_{j}\mid 0\leq j\leq n\}. \mbox{ For each } 0\leq j\leq n \mbox{ write } \Upsilon_{j}=\{S\mid S\subset C_{j},\mid S\mid=n-1,S\neq E_{j}\}. \mbox{ The matrix} \end{aligned}$$

Theorem 1.1.
$$\prod_{j=0}^{n} \left(\frac{\prod_{\xi \in \Upsilon_j} m(\langle \{\mathbf{P}'_j\} \cup \xi \rangle)}{m(\langle \{\mathbf{P}'_j\} \cup E_j \rangle)^{n-1}} \right) = 1$$

Proof of Theorem 1.1. By the same way as in the proof of Theorem 2 in [2] we have $\prod_{\substack{\xi \in \Upsilon_j \\ m(<\{P'_j\} \bigcup \mathcal{E}_j >)^{n-1}} = \prod_{\substack{\xi \in \Upsilon_j \\ \mu(<\{T, P_j\} \bigcup \mathcal{E}_j >)^{n-1}} = \frac{\prod_{\substack{\xi \in \Upsilon_j \\ \mu(<\{T, P_j\} \bigcup \mathcal{E}_j >)^{n-1}}}{\mu(<\{T, P_j\} \bigcup \mathcal{E}_j >)^{n-1}} .$ We obtain $\prod_{j=0}^n (\prod_{\substack{\xi \in \Upsilon_j \\ \xi \in \Upsilon_j}} \mu(<\{T, P_j\} \bigcup \mathcal{E}_j >)) = \prod_{j=0}^n \mu(<\{T, P_j\} \bigcup \mathcal{E}_j >)^{n-1} .$

Theorem 1.1 is proven.

Theorem 1 in [2] is the case of r = 1 of the above Theorem 1.1.

Corollary of Theorem 1.1. Let
$$\tau = \begin{pmatrix} 0 & 1 & 2 & \cdots & n \\ \tau(0) & \tau(1) & \tau(2) & \cdots & \tau(n) \end{pmatrix}$$
 be any element of S_{n+1} .

Rewrite P_j for $P_{\tau(j)}$ with all $0 \le j \le n$ and P'_j for $P'_{\tau(j)}$ with all $0 \le j \le n$. Then apply

Theorem 1.1. Then we have the equation for simplex $P_{\tau(0)}P_{\tau(1)}P_{\tau(2)}\cdots P_{\tau(n)}$.

(We have simplex $P_0P_1P_2\cdots P_n = P_{\tau(0)}P_{\tau(1)}P_{\tau(2)}\cdots P_{\tau(n)}$. We can consider Theorem 1.1 for any order $(P_{\tau(0)}, P_{\tau(1)}, P_{\tau(2)}, \cdots, P_{\tau(n)}, P_{\tau(0)})$.)

We obtain also

Theorem 1.2. Let
$$\sigma = \begin{pmatrix} 0 & 1 & 2 & \cdots & n \\ \sigma(0) & \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$
 be any element of S_{n+1} that
satisfies $\sigma(j) \neq j$ for all the integers $0 \leq j \leq n$. For any $0 \leq j \leq n$, put
 $F_{\sigma,j} = \{P_x \mid 0 \leq x \leq n, x \neq j, x \neq \sigma(j)\}, \ \Delta_{\sigma,j} = \langle \{P'_j\} \cup F_{\sigma,j} \rangle, and$
 $\Xi_{\sigma,j} = \{S \mid S \subset C_j, \mid S \mid = n-1, S \neq F_{\sigma,j}\}.$ Then we have
 $\prod_{j=0}^n \left(\frac{\prod_{\xi \in \Xi_{\sigma,j}} m(\langle \{P'_j\} \cup \xi \rangle)}{m(\Delta_{\sigma,j})^{n-1}}\right) = 1.$

 $\frac{Proof of Theorem 1.2.}{\sum_{\xi \in \Xi_{\sigma,j}} m(<\{P_j'\} \cup \xi >)} = \frac{\prod_{\xi \in \Xi_{\sigma,j}} \mu(<\{T, P_j\} \cup \xi >)}{\mu(<\{T, P_j\} \cup \{P_x \mid 0 \le j \le n, x \ne j, x \ne \sigma(j)\} >)^{n-1}}$. We obtain

$$\prod_{j=0}^{n} \left(\prod_{\xi \in \Xi_{\sigma,j}} \mu(\langle \{\mathsf{T},\mathsf{P}_{j}\} \bigcup \xi \rangle)\right) = \prod_{j=0}^{n} \mu(\langle \{\mathsf{T},\mathsf{P}_{j}\} \bigcup \{\mathsf{P}_{x} \mid 0 \le j \le n, x \ne j, x \ne \sigma(j)\} \rangle)^{n-1}$$

Theorem 1.2 is proven. (Remark. We have easily $|\Xi_{\sigma,j}| = n-1$ for any $0 \le j \le n$.)

Any element of S_{n+1} is expressed uniquely as a product of cyclic substitutions any two of which have disjoint letters. So, if we renumber $\{P_j\}_{j=0}^n$ suitably for each σ , Theorem 1.2 has the same expression that Theorem 1.1 has.

For each *n* dimensional simplex $P_0P_1P_2\cdots P_n$, the number of the equations given in Theorem 1.2 is equal to $d_{n+1} = \#\{\sigma \in S_{n+1} \mid \sigma(j) \neq j \text{ for any } 0 \le j \le n\}$. Namely the number of the generalizations of Theorem 1.1 type of Ceva's theorem on the triangle to simplex $P_0P_1P_2\cdots P_n$ is equal to d_{n+1} . It is well known that $d_{n+1} = (n+1)! \left(\sum_{k=0}^{n+1} \frac{(-1)^k}{k!}\right).$

Example. Let n = 3. We have $d_4 = 9$. There are 9 equations of Theorem 1.1 type for any tetrahedron $P_0P_1P_2P_3$. The substitutions to consider are the following. As σ in Theorem 1.2, we have (0123), (0132), (0213), (0231), (0312), (0321), (01)(23), (02)(13), (03)(12). The cases of (0123), (0132), (0213), (0231), (0312) and (0321) are treated in Theorem 1 in [1]. The cases of (01)(23), (02)(13) and (03)(12) are treated in Theorem 2 in [1].

One may say that there are only 9 generalizations of Ceva's theorem of the triangle to the tetrahedron.

Section 2. Theorem of another type for any integer n > 2.

Let *n* be any integer>2. Let $P_0P_1P_2\cdots P_n$ be any *n* dimensional simplex with vertices $\{\mathbf{P}_i\}_{i=0}^n$ in \mathbf{R}^n . Let T be any point in the interior of $\mathbf{P}_0\mathbf{P}_1\mathbf{P}_2\cdots\mathbf{P}_n$. Let b be any integer larger than 1. Let $\{U_i\}_{i=0}^b$ be such any sequence of points in \mathbb{R}^n that $U_j \in \{P_x \mid 0 \le x \le n\}$ for all the integers j with $0 \le j \le b$, that $U_j \ne U_{j+1}$ for all the *j* with $0 \le j \le b-1$ and that $U_0 = U_b$. Then let I(j, j+1) denote the integers $U_i U_{i+1}$ and line intersection point of the (the hyper-plane $\supset (\{T\} \bigcup \{P_x \mid 0 \le x \le n, P_x \ne U_j, P_x \ne U_{j+1}\}))$ for each integer $j \in [0, b-1]$. For arbitrary points P and Q in \mathbf{R}^n we write $d(\mathbf{P},\mathbf{Q}) = \|\overline{\mathbf{PQ}}\|$. Notations being as above we obtain

Theorem 2.1. $\prod_{j=0}^{b-1} \frac{d(I(j, j+1), U_{j+1})}{d(U_j, I(j, j+1))} = 1.$

Proof of Theorem 2.1. First we treat the case of b=3. Let π_0 be the minimum **R**-linear

submanifold \mathbf{R}^n containing Т in and all the points in $\{P_x \mid 0 \le x \le n, P_x \ne U_0, P_x \ne U_1, P_x \ne U_2\}$. Let π'_0 be the minimum **R**-linear submanifold in \mathbf{R}^n containing T, U₀, U₁ and U₂. Note that the dimension of π_0 is n-2 and that the dimension of π'_0 is 3. We have $\pi_0 \cap \pi'_0$ is a line (namely **R**-linear submanifold of dimension 1). Let Q_0 be the intersection point of π_0 and the plane containing U_0 , U_1 and U_2 . Then the lines $U_0I(1,2)$, $U_1I(2,3)$ and $U_2I(0,1)$ intersect at the point Q_0 . So, we can apply Ceva's theorem to the triangle $U_0U_1U_2$. We have Theorem 2.1 for b=3.

Now assume Theorem 2.1 is true for b = some integer $k \ge 3$. Then we consider the case of b = k + 1.

We have $U_{k+1} = U_0$. If $U_{k-1} = U_{k+1}$, this case resolves itself into the case of b = k since I(k-1,k) = I(k,k+1). So, we assume $U_{k-1} \neq U_{k+1}$. Let I denote the intersection point of the line $U_{k-1}U_{k+1}$ and (the hyper-plane $\supset (\{T\} \bigcup \{P_x \mid 0 \le x \le n, P_x \ne U_{k-1}, P_x \ne U_{k+1}\})$). By the case of b = k, we have $\frac{d(I, U_{k+1})}{d(U_{k+1}, I)} \prod_{j=0}^{k-2} \frac{d(I(j, j+1), U_{j+1})}{d(U_{k+1}, I(j, j+1))} = 1$. Let π be the minimum submanifold in \mathbf{R}^n containing T **R**-linear and all the points in $\{P_x \mid 0 \le x \le n, P_x \ne U_{k-1}, P_x \ne U_k, P_x \ne U_{k+1}\}$. Let π' be the minimum **R**-linear submanifold in \mathbf{R}^n containing T, U_{k-1} , U_k and U_{k+1} . Note that the dimension of π is n-2 and that the dimension of π' is 3. We have $\pi \cap \pi'$ is a line (namely **R**-linear submanifold of dimension 1). Let Q be the intersection point of π and the plane containing U_{k-1} , U_k and U_{k+1} . Then the lines $U_{k-1}I(k,k+1)$, U_kI and $U_{k+1}I(k-1,k)$ intersect at the point Q. $U_{k-1}U_{k}U_{k+1}$ triangle We Apply Ceva's theorem to the have $\frac{d(\mathrm{I}, \mathrm{U}_{k+1})}{d(\mathrm{U}_{k-1}, \mathrm{I})} = \frac{d(\mathrm{I}(k-1,k), \mathrm{U}_{k}))}{d(\mathrm{U}_{k-1}, \mathrm{I}(k-1,k))} \cdot \frac{d(\mathrm{I}(k,k+1), \mathrm{U}_{k+1}))}{d(\mathrm{U}_{k}, \mathrm{I}(k,k+1))}.$ Hence $\frac{d(\mathrm{I}(k-1,k),\mathrm{U}_k))}{d(\mathrm{U}_{k-1},\mathrm{I}(k-1,k))} \cdot \frac{d(\mathrm{I}(k,k+1),\mathrm{U}_{k+1}))}{d(\mathrm{U}_k,\mathrm{I}(k,k+1))} \prod_{i=0}^{k-2} \frac{d(\mathrm{I}(j,j+1),\mathrm{U}_{j+1})}{d(\mathrm{U}_i,\mathrm{I}(j,j+1))} = 1.$ Namely

 $\prod_{j=0}^{k} \frac{d(I(j, j+1), U_{j+1})}{d(U_j, I(j, j+1))} = 1.$ The case of b = k+1 is proven. Theorem 2.1 is proven. (The case of b = 2 is trivial.)

Section 3. Case of n = 4.

The following theorem is different from Theorems 1.1 and 1.2 in this paper and Theorem 2 in [2]. We obtain

```
Theorem 3.1. Let n = 4. One has
```

 $\frac{m(P_0'P_1P_2P_4)m(P_0'P_1P_2P_3)}{m(P_0'P_1P_2P_3)m(P_0'P_1P_3P_4)} \cdot \frac{m(P_1'P_2P_0P_3)m(P_1'P_2P_3P_4)}{m(P_1'P_0P_3P_4)m(P_1'P_2P_0P_4)} \cdot \frac{m(P_2'P_3P_0P_4)m(P_2'P_3P_1P_4)}{m(P_2'P_0P_1P_4)m(P_2'P_3P_0P_1)} \cdot \frac{m(P_3'P_4P_0P_1)m(P_3'P_4P_0P_2)}{m(P_3'P_0P_1P_2)m(P_3'P_4P_1P_2)} \cdot \frac{m(P_4'P_0P_1P_2)m(P_4'P_0P_1P_3)}{m(P_4'P_0P_2P_3)} = 1.$

Proof of Theorem 3.1. We use

If a:b:c:d = t:u:v:w = w:x:y:z, then a:b:c:d = t - w:u - x:v - y:w - z.

Using that and computing volumes of 4 dimensional simplexes we have

$$\begin{split} m(P_0'P_1P_3P_4) &: m(P_0'P_1P_2P_4) : m(P_0'P_1P_2P_3) : m(P_0'P_2P_3P_4) \\ &= \mu(P_0P_0'P_1P_3P_4) : \mu(P_0P_0'P_1P_2P_4) : \mu(P_0P_0'P_1P_2P_3) : \mu(P_0P_0'P_2P_3P_4) \\ &= \mu(TP_0'P_1P_3P_4) : \mu(TP_0'P_1P_2P_4) : \mu(TP_0'P_1P_2P_3) : \mu(TP_0'P_2P_3P_4) \\ &= \mu(TP_0P_1P_3P_4) : \mu(TP_0P_1P_2P_4) : \mu(TP_0P_1P_2P_3) : \mu(TP_0P_2P_3P_4). \end{split}$$

By the same method,

 $m(P_1'P_2P_0P_3): m(P_1'P_2P_0P_4): m(P_1'P_2P_3P_4): m(P_1'P_0P_3P_4)$ = $\mu(TP_1P_2P_0P_3): \mu(TP_1P_2P_0P_4): \mu(TP_1P_2P_3P_4): \mu(TP_1P_0P_3P_4),$

 $m(P_{2}'P_{3}P_{0}P_{1}): m(P_{2}'P_{3}P_{0}P_{4}): m(P_{2}'P_{3}P_{1}P_{4}): m(P_{2}'P_{0}P_{1}P_{4})$ = $\mu(TP_{2}P_{3}P_{0}P_{1}): \mu(TP_{2}P_{3}P_{0}P_{4}): \mu(TP_{2}P_{3}P_{1}P_{4}): \mu(TP_{2}P_{0}P_{1}P_{4}),$

 $m(P'_{3}P_{4}P_{0}P_{1}): m(P'_{3}P_{4}P_{0}P_{2}): m(P'_{3}P_{4}P_{1}P_{2}): m(P'_{3}P_{0}P_{1}P_{2})$ = $\mu(TP_{3}P_{4}P_{0}P_{1}): \mu(TP_{3}P_{4}P_{0}P_{2}): \mu(TP_{3}P_{4}P_{1}P_{2}): \mu(TP_{3}P_{0}P_{1}P_{2}),$

and

 $m(P_4'P_0P_1P_2): m(P_4'P_0P_1P_3): m(P_4'P_0P_2P_3): m(P_4'P_1P_2P_3)$ = $\mu(TP_4P_0P_1P_2): \mu(TP_4P_0P_1P_3): \mu(TP_4P_0P_2P_3): \mu(TP_4P_1P_2P_3).$ For simplicity, write

 $A = \mu(TP_0P_2P_3P_4), B = \mu(TP_1P_0P_3P_4), C = \mu(TP_2P_0P_1P_4), D = \mu(TP_3P_0P_1P_2) \text{ and } E = \mu(TP_4P_1P_2P_3).$ Then the left side of the equation in Theorem 3.1 is equal to

$$\frac{CD}{AB} \cdot \frac{DE}{BC} \cdot \frac{AE}{CD} \cdot \frac{BA}{DE} \cdot \frac{CB}{EA} = \frac{A^2 B^2 C^2 D^2 E^2}{A^2 B^2 C^2 D^2 E^2} = 1.$$

Theorem 3.1 is proven.

Since Theorem 3.1 holds true for any 4 dimensional simplex, we have

Corollary of Theorem 3.1. Let $\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ \sigma(0) & \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) \end{pmatrix}$ be any element of

 S_5 . One can replace P_j by $P_{\sigma(j)}$ for any $0 \le j \le 4$ and P'_j by $P'_{\sigma(j)}$ for any $0 \le j \le 4$ in the equation of Theorem 3.1.

Theorem 3.1 shows that Theorems 1.1 and 1.2 in Section 1 do not cover all possible generalizations of Ceva's theorem on the triangle to n dimensional simplexes with $n \ge 4$.

References

- [1] K. Hatada, Generalization of Ceva's theorem on the triangle to the tetrahedron, Sci. Rep. Fac. Educ. Gifu Univ. (Nat. Sci.), 31, (2007), 7-9.
- [2] K. Hatada, Generalization of Ceva's theorem to the n dimensional simplex, Sci. Rep. Fac. Educ. Gifu Univ. (Nat. Sci.), 32, (2008), 9-12.