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Theorems for the n dimensional simplex  

which are generalizations of Ceva’s theorem on the triangle

Kazuyuki HATADA 
Department of Mathematics, Faculty of Education, Gifu University 

1-1, Yanagido, Gifu City, GIFU 501-1193, Japan 

 Abstract.  We show other generalizations of Ceva’s theorem on the triangle to the n
dimensional simplex than the theorems given in [2].  They are Theorems 1.1, 1.2, 2.1 and 3.1 
below.  

   Let n  be any integer>2. Let 0 1 2P P P Pn  denote an arbitrary n  dimensional simplex in 

Euclidean space nR , whose vertices are {P | 0 }j j n .  Let  denote the standard 

Euclidean measure (=volume) on nR .  Let m  denote the standard Euclidean measure on 
1nR . Let T be any point in the interior of 0 1 2P P P Pn .  For each integer j  with 0 j n ,

write {P | 0 , }j xC x n x j .  For each integer j  with 0 j n , let jH  denote the 

1n  dimensional hyper-plane containing all the points in jC . For each integer j  with 

0 j n , let Pj  denote the point of the intersection of line P Tj  and hyper-plane jH . For 

arbitrary finite points {V |1 }j j k  in Euclidean space nR , let {V |1 }j j k  denote 

the minimum closed convex subset, of nR , containing all the points {V |1 }j j k .   

Section 1.  Case of any integer 2.n

   Recall that 0 1 2P P P Pn  denote an arbitrary n  dimensional simplex in 

Euclidean space nR , whose vertices are {P | 0 }j j n . Let j  be any integer with 
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0 .j n  Recall {P | 0 , }.j xC x n x j  Let r  be any positive integer 2 . Let 

1{ }r
u uk  be any sequence of positive integers with 

1
1 r

uu
n k   and  1 2u uk k  

for all the integers 1 1u r . For each integer j  with 10 2j k , write 

1j j jE C C . Write 
1 11 0k kE C C . For each integer j  with 1 1 2 2k j k k , 

write 1j j jE C C . Write 
1 2 1 2 11 1k k k k kE C C .  Let s  be any integer with 

1 1s r . For each integer j  with 1

1 1
2s s

u uu u
k j k , write 1j j jE C C . 

Put 1

1

s
s uu

a k . Write 
11 1s s sa a aE C C . Here we put 0 1.a k   So, we have 

{ | 0 }.jE j n  For each 0 j n  write { | , | | 1, }.j j jS S C S n S E   Then 

we have | | 1j n . We obtain  

Theorem 1.1. 1
0

( {P } )
1.

( {P } )
j

jn

n
j j j

m

m E

Proof of Theorem 1.1.  By the same way as in the proof of Theorem 2 in [2] we have  

1 1

( {P } ) ( {T, P } )

( {P } ) ( {T, P } )
j j

j j

n n
j j j j

m

m E E
 . 

We obtain  
0

( ( {T, P } ))
j

n

j
j

= 1

0

( {T, P } )
n

n
j j

j

E  . 

Theorem 1.1 is proven.  

   Theorem 1 in [2] is the case of 1r  of the above Theorem 1.1.  

Corollary of Theorem 1.1. Let
0 1 2
(0) (1) (2) ( )

n
n

 be any element of 1nS .

Rewrite Pj  for ( )P j  with all 0 j n  and Pj  for ( )P j  with all 0 j n . Then apply 

Theorem 1.1. Then we have the equation for simplex (0) (1) (2) ( )P P P P n  .  
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(We have simplex 0 1 2P P P Pn = (0) (1) (2) ( )P P P P n . We can consider Theorem 1.1 for any 

order (0) (1) (2) ( ) (0)(P ,P ,P , ,P ,P )n .)

We obtain also 

Theorem 1.2. Let
0 1 2
(0) (1) (2) ( )

n
n

be any element of 1nS  that 

satisfies ( )j j  for all the integers 0 j n .  For any 0 j n , put 

, {P | 0 , , ( )}j xF x n x j x j , , ,{P }j j jF , and  

, ,{ | , | | 1, }.j j jS S C S n S F   Then we have    

,

1
0 ,

( {P } )
1.

( )
j

jn

n
j j

m

m

Proof of Theorem 1.2.  By the same way as in the proof of Theorem 2 in [2] we have  

, ,

1 1
,

( {P } ) ( {T, P } )

( ) ( {T, P } {P | 0 , , ( )} )
j j

j j

n n
j j x

m

m j n x j x j
 . 

We obtain

,0

( ( {T, P } ))
j

n

j
j

= 1

0

( {T, P } {P | 0 , , ( )} )
n

n
j x

j

j n x j x j  . 

Theorem 1.2 is proven.  (Remark.  We have easily ,| | 1j n  for any 0 j n .)

   Any element of 1nS  is expressed uniquely as a product of cyclic substitutions any two of 

which have disjoint letters. So, if we renumber 0{P }n
j j  suitably for each , Theorem 1.2 

has the same expression that Theorem 1.1 has. 

   For each n  dimensional simplex 0 1 2P P P Pn , the number of the equations given in 

Theorem 1.2 is equal to 1 1#{ | ( )  for any 0 }n nd S j j j n . Namely the number of 

the generalizations of Theorem 1.1 type of Ceva’s theorem on the triangle to simplex 
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0 1 2P P P Pn  is equal to 1nd . It is well known that 1
1 0

( 1)( 1)! .
!

k
n

n k
d n

k

Example.  Let 3.n  We have 4 9.d  There are 9 equations of Theorem 1.1 type for any 

tetrahedron 0 1 2 3P P P P . The substitutions to consider are the following.  As  in Theorem 

1.2, we have (0123), (0132), (0213), (0231), (0312), (0321), (01)(23), (02)(13), (03)(12).    
The cases of (0123), (0132), (0213), (0231), (0312) and (0321) are treated in Theorem 1 in [1]. 
The cases of (01)(23), (02)(13) and (03)(12) are treated in Theorem 2 in [1].   

One may say that there are only 9 generalizations of Ceva’s theorem of the triangle to the 
tetrahedron.  

Section 2.  Theorem of another type for any integer 2n  .   

Let n  be any integer>2. Let 0 1 2P P P Pn  be any n  dimensional simplex with vertices 

0{P }n
j j  in nR .  Let T be any point in the interior of 0 1 2P P P Pn . Let b  be any integer 

larger than 1.  Let 0{U }b
j j  be such any sequence of points in nR  that 

U { | 0 }j xP x n  for all the integers j  with  0 j b , that 1U Uj j  for all the 

integers  j  with  0 1j b  and that 0U Ub .  Then let I( , 1)j j  denote the 

intersection point of the line  1U Uj j  and (the 

hyper-plane 1({ } {P | 0 , P U , P U })x x j x jT x n )  for each integer [0, 1]j b .

For arbitrary points P  and Q in nR  we write (P,Q) PQd .  Notations being as 

above we obtain  

Theorem 2.1. 
1

1

0

(I( , 1), U )
1

(U , I( , 1))

b
j

j j

d j j
d j j .

Proof of Theorem 2.1.  First we treat the case of 3b . Let 0  be the minimum R -linear 
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submanifold in nR  containing T and all the points in 

0 1 2{P | 0 , P U , P U , P U }x x x xx n . Let 0  be the minimum R -linear submanifold in 

nR  containing T, 0 1 2U , U  and U . Note that the dimension of 0  is 2n  and that the 

dimension of 0  is 3. We have 0 0  is a line (namely R -linear submanifold of 

dimension 1). Let 0Q  be the intersection point of 0  and the plane containing 0U , 1U

and 2U .  Then the lines 0U I(1,2) , 1U I(2,3)  and 2U I(0,1)  intersect at the point 0Q . So, 

we can apply Ceva’s theorem to the triangle 0 1 2U U U .  We have Theorem 2.1 for 3.b

   Now assume Theorem 2.1 is true for b =some integer 3.k  Then we consider the case 
of 1.b k

   We have 1 0U U .k  If 1 1U Uk k , this case resolves itself into the case of b k  since 

( 1, ) ( , 1)I k k I k k .  So, we assume 1 1U Uk k . Let I  denote the intersection point of 

the line 1 1U Uk k  and (the hyper-plane 1 1({T} {P | 0 , P U , P U })x x k x kx n ). By 

the case of b k , we have  
2

1+1

01

(I( , 1), U )(I, U ) 1
(U , I) (U , I( , 1))

k
jk

jk j

d j jd
d d j j .  Let  be the minimum 

-linearR  submanifold in nR  containing T and all the points in 

1 1{P | 0 , P U , P U , P U }x x k x k x kx n . Let  be the minimum R -linear submanifold 

in nR  containing T, 1 1U , U  and Uk k k . Note that the dimension of  is 2n  and that 

the dimension of  is 3. We have  is a line (namely R -linear submanifold of 

dimension 1). Let Q be the intersection point of  and the plane containing 1U ,k Uk  and 

1U .k  Then the lines 1U I( , 1)k k k , U Ik  and 1U I( 1, )k k k  intersect at the point Q. 

Apply Ceva’s theorem to the triangle 1 1U U Uk k k . We have 

+1 1

1 1

(I, U ) (I( 1, ),U )) (I( , 1),U ))
(U , I) (U , I( 1, )) (U , I( , 1))

k k k

k k k

d d k k d k k
d d k k d k k .  Hence  

2
11

01

(I( , 1), U )(I( 1, ),U )) (I( , 1),U )) 1
(U , I( 1, )) (U , I( , 1)) (U , I( , 1))

k
jk k

jk k j

d j jd k k d k k
d k k d k k d j j .  Namely 
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1

0

(I( , 1), U )
1

(U , I( , 1))

k
j

j j

d j j
d j j . The case of 1b k  is proven.  Theorem 2.1 is proven.  

(The case of 2b  is trivial.) 

Section 3.  Case of 4n .

The following theorem is different from Theorems 1.1 and 1.2 in this paper and Theorem 2 
in [2].  We obtain  

Theorem 3.1. Let 4n . One has 

0 1 2 4 0 1 2 3 1 2 0 3 1 2 3 4

0 2 3 4 0 1 3 4 1 0 3 4 1 2 0 4

2 3 0 4 2 3 1 4 3 4 0 1 3 4 0 2

2 0 1 4 2 3 0 1 3 0 1 2 3 4 1 2

(P P P P ) (P P P P ) (P P P P ) (P P P P )
(P P P P ) (P P P P ) (P P P P ) (P P P P )
(P P P P ) (P P P P ) (P P P P ) (P P P P ) (P
(P P P P ) (P P P P ) (P P P P ) (P P P P )

m m m m
m m m m
m m m m m
m m m m

4 0 1 2 4 0 1 3

4 1 2 3 4 0 2 3

P P P ) (P P P P )
(P P P P ) (P P P P )

1.

m
m m

Proof of Theorem 3.1.  We use  

If  : : : : : : : : :  ,  then  : : : : : :  .a b c d t u v w w x y z a b c d t w u x v y w z

Using that and computing volumes of 4 dimensional simplexes we have  

0 1 3 4 0 1 2 4 0 1 2 3 0 2 3 4

0 0 1 3 4 0 0 1 2 4 0 0 1 2 3 0 0 2 3 4

0 1 3 4 0 1 2 4 0 1 2 3 0 2 3 4

0 1 3 4 0 1 2 4 0

(P P P P ) : (P P P P ) : (P P P P ) : (P P P P )
(P P P P P ) : (P P P P P ) : (P P P P P ) : (P P P P P )
(TP P P P ) : (TP P P P ) : (TP P P P ) : (TP P P P )

= (TP P P P ) : (TP P P P ) : (TP P

m m m m

1 2 3 0 2 3 4P P ) : (TP P P P ).

By the same method, 

1 2 0 3 1 2 0 4 1 2 3 4 1 0 3 4

1 2 0 3 1 2 0 4 1 2 3 4 1 0 3 4

(P P P P ) : (P P P P ) : (P P P P ) : (P P P P )
= (TP P P P ) : (TP P P P ) : (TP P P P ) : (TP P P P ),
m m m m

2 3 0 1 2 3 0 4 2 3 1 4 2 0 1 4

2 3 0 1 2 3 0 4 2 3 1 4 2 0 1 4

(P P P P ) : (P P P P ) : (P P P P ) : (P P P P )
= (TP P P P ) : (TP P P P ) : (TP P P P ) : (TP P P P ),
m m m m

3 4 0 1 3 4 0 2 3 4 1 2 3 0 1 2

3 4 0 1 3 4 0 2 3 4 1 2 3 0 1 2

(P P P P ) : (P P P P ) : (P P P P ) : (P P P P )
= (TP P P P ) : (TP P P P ) : (TP P P P ) : (TP P P P ),
m m m m

and

4 0 1 2 4 0 1 3 4 0 2 3 4 1 2 3

4 0 1 2 4 0 1 3 4 0 2 3 4 1 2 3

(P P P P ) : (P P P P ) : (P P P P ) : (P P P P )
= (TP P P P ) : (TP P P P ) : (TP P P P ) : (TP P P P ).
m m m m
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For simplicity, write 

0 2 3 4 1 0 3 4 2 0 1 4 3 0 1 2 4 1 2 3(TP P P P ),  (TP P P P ),  (TP P P P ),  (TP P P P ) and (TP P P P ).A B C D E

Then the left side of the equation in Theorem 3.1 is equal to 

2 2 2 2 2

2 2 2 2 2 1.CD DE AE BA CB A B C D E
AB BC CD DE EA A B C D E

Theorem 3.1 is proven.  

Since Theorem 3.1 holds true for any 4 dimensional simplex, we have  

Corollary of Theorem 3.1. Let
0 1 2 3 4
(0) (1) (2) (3) (4)

 be any element of 

5.S  One can replace ( )P   P    0 4j jby for any j  and ( )P   P    0 4j jby for any j  in the 

equation of Theorem 3.1.  

   Theorem 3.1 shows that Theorems 1.1 and 1.2 in Section 1 do not cover all possible 
generalizations of Ceva’s theorem on the triangle to n  dimensional simplexes with 4n .
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