Generalization of Ceva＇s theorem to the n dimensional simplex

Kazuyuki HATADA
Department of Mathematics，Faculty of Education，Gifu University
1－1，Yanagido，Gifu City，GIFU 501－1193，Japan

Abstract．We generalize Ceva＇s theorem to the n－dimensional simplex．

Let n be any integer >2 ．Let $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ denote an arbitrary n dimensional simplex in Euclidean space \mathbf{R}^{n} ，whose vertices are $\left\{\mathrm{P}_{j} \mid 0 \leq j \leq n\right\}$ ．Let μ denote the standard Euclidean measure（＝volume）on \mathbf{R}^{n} ．Let m denote the standard Euclidean measure on \mathbf{R}^{n-1} ．Let T be any point in the interior of $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \cdots \mathrm{P}_{n}$ ．For each integer j with $0 \leq j \leq n$ ， write $C_{j}=\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, x \neq j\right\}$ ．For each integer j with $0 \leq j \leq n-1$ ，write $D_{j}=C_{j} \cap C_{j+1}$ ．Write $D_{n}=C_{n} \cap C_{0}$ ．For each integer j with $0 \leq j \leq n$ ，let H_{j} denote the $n-1$ dimensional hyper－plane containing all the points in C_{j} ．For each integer j with $0 \leq j \leq n$ ，let P_{j}^{\prime} denote the point of the intersection of line $\mathrm{P}_{j} \mathrm{~T}$ and the hyper－plane H_{j} ． For arbitarary finite points $\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}$ in Euclidean space \mathbf{R}^{n} ，let $<\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}>$ denote the minimum closed convex subset，of \mathbf{R}^{n} ，containing all the points $\left\{\mathrm{V}_{j} \mid 1 \leq j \leq k\right\}$ ．

Section 1．Case of $n=4$ ．

We studied the case of $n=3$ in my article＂Generalization of Ceva＇s theorem on the triangle to the tetrahedron＂in Science Reports of the Faculty of Education Gifu University （Natural Science），Vol．31，（February 2007），pp．7－9 already．

We obtain

Theorem 1. Let $n=4$. One has

```
\(\frac{m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)}{m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right)^{3}} \cdot \frac{m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{3}\right) m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right)}{m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right)^{3}}\).
\(\frac{m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{1}\right) m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{4}\right) m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{1} \mathrm{P}_{4}\right)}{m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{4}\right)^{3}} \cdot \frac{m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{1}\right) m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{2}\right) m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{2}\right)}{m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right)^{3}}\).
\(\frac{m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right) m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right) m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right)}{m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)^{3}}\)
\(=1\)
```


Proof of Theorem 1. We use

$$
\text { If } a: b: c: d=t: u: v: w=s: x: y: z \text {, then } a: b: c: d=t-s: u-x: v-y: w-z \text {. }
$$

Computing volumes of 4 dimensional simplexes and using that we have

$$
\begin{aligned}
& m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{0}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right) \\
& =\mu\left(\mathrm{P}_{0} \mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right): \mu\left(\mathrm{P}_{0} \mathrm{P}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right): \mu\left(\mathrm{P}_{0} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right): \mu\left(\mathrm{P}_{0} \mathrm{P}_{0}^{\prime} \mathrm{P}_{3} \mathrm{P}_{4}\right) \\
& =\mu\left(\mathrm{TP}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right) \mu\left(\mathrm{TP}_{0}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{0}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right):\left(\mathrm{TP}_{0} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{0} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right) .
\end{aligned}
$$

By the same method,

$$
\begin{aligned}
& m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{1}^{\prime} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right) \\
& =\mu\left(\mathrm{TP}_{1} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{1} \mathrm{P}_{2} \mathrm{P}_{0} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{1} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right), \\
& m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \mathrm{P}_{1} \mathrm{P}_{4}\right): m\left(\mathrm{P}_{2}^{\prime} \mathrm{P}_{0} \mathrm{P}_{4}\right) \\
& =\mu\left(\mathrm{TP}_{2} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{1}\right): \mu\left(\mathrm{TP}_{2} \mathrm{P}_{3} \mathrm{P}_{0} \mathrm{P}_{4}\right) \mu\left(\mathrm{TP}_{2} \mathrm{P}_{3} \mathrm{P}_{1} \mathrm{P}_{4}\right): \mu\left(\mathrm{TP}_{2} \mathrm{P}_{0} \mathrm{P}_{4}\right), \\
& m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{1}\right): m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{2}\right): m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{2}\right): m\left(\mathrm{P}_{3}^{\prime} \mathrm{P}_{0} \mathrm{P}_{2}{ }_{2}\right) \\
& =\mu\left(\mathrm{T}_{3} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{1}\right): \mu\left(\mathrm{TP}_{3} \mathrm{P}_{4} \mathrm{P}_{0} \mathrm{P}_{2}\right): \mu\left(\mathrm{TP}_{3} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{2}\right): \mu\left(\mathrm{TP}_{3} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right): m\left(\mathrm{P}_{4}^{\prime} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right. \\
& =\mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{P}_{3}\right): \mu\left(\mathrm{TP}_{4} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right) .
\end{aligned}
$$

For simplicity, write
$A=\mu\left(\mathrm{TP}_{0} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\right), B=\mu\left(\mathrm{TP}_{1} \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{4}\right), C=\mu\left(\mathrm{TP}_{2} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{4}\right), D=\mu\left(\mathrm{TP}_{3} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2}\right)$ and $E=\mu\left(\mathrm{TP}_{4} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$.
Then the left side of the equation in Theorem 1 is equal to

$$
\frac{B C D}{A^{3}} \cdot \frac{D C E}{B^{3}} \cdot \frac{D A E}{C^{3}} \cdot \frac{B A E}{D^{3}} \cdot \frac{C B A}{E^{3}}=\frac{A^{3} B^{3} C^{3} D^{3} E^{3}}{A^{3} B^{3} C^{3} D^{3} E^{3}}=1 .
$$

Theorem 1 is proved.
Since Theorem 1 holds true for any 4 dimensional simplex, we have

Corollary 1 of Theorem 1. Let $\sigma=\left(\begin{array}{ccccc}0 & 1 & 2 & 3 & 4 \\ \sigma(0) & \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4)\end{array}\right)$ be any element of S_{5}. One can replace P_{j} by $\mathrm{P}_{\sigma(j)}$ for any $0 \leq j \leq 4$ and P_{j}^{\prime} by $\mathrm{P}_{\sigma(j)}^{\prime}$ for any $0 \leq j \leq 4$ in the equation of Theorem 1.

Section 2. Case of any integer $n \geq 3$.
Let j be any integer with $0 \leq j \leq n$. Write $Q_{j}=\left\{\mathrm{P}_{x} \mid 0 \leq x \leq n, x \neq j\right\}$. Write $\Lambda_{j}=\left\{S\left|S \subset Q_{j},|S|=n-1, S \neq D_{j}\right\}\right.$. Then we have $\left|\Lambda_{j}\right|=n-1$. We obtain

Theorem 2. $\prod_{j=0}^{n}\left(\frac{\prod_{\xi \in \Lambda_{j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup D_{j}>\right)^{n-1}}\right)=1$.

Proof of Theorem 2. We consider Theorem 2 for the order $\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{n}, \mathrm{P}_{0}\right)$.
By the same way as in the proof of Theorem 1 we have
$\frac{\prod_{\xi \in \Lambda_{j}} m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup \xi>\right)}{m\left(<\left\{\mathrm{P}_{j}^{\prime}\right\} \cup D_{j}>\right)^{n-1}}=\frac{\prod_{\xi \in \Lambda_{j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)}{\mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup D_{j}>\right)^{n-1}}$.
We obtain $\prod_{j=0}^{n}\left(\prod_{\xi \in \Lambda_{j}} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup \xi>\right)\right)=\prod_{j=0}^{n} \mu\left(<\left\{\mathrm{T}, \mathrm{P}_{j}\right\} \cup D_{j}>\right)^{n-1}$.
Theorem 2 is proved.

Corollary of Theorem 2. Let $\tau=\left(\begin{array}{ccccc}0 & 1 & 2 & \cdots & n \\ \tau(0) & \tau(1) & \tau(2) & \cdots & \tau(n)\end{array}\right)$ be any element of
S_{n+1}. Rewrite P_{j} for $\mathrm{P}_{\tau(j)}$ with all $0 \leq j \leq n$ and P_{j}^{\prime} for $\mathrm{P}_{\tau(j)}^{\prime}$ with all $0 \leq j \leq n$.
Then apply Theorem 2. Then we have the equation for simplex

$$
\mathrm{P}_{\tau(0)} \mathrm{P}_{\tau(1)} \mathrm{P}_{\tau(2)} \cdots \mathrm{P}_{\tau(n)}
$$

(We can consider Theorem 2 for any order $\left(\mathrm{P}_{\tau(0)}, \mathrm{P}_{\tau(1)}, \mathrm{P}_{\tau(2)}, \cdots, \mathrm{P}_{\tau(n)}, \mathrm{P}_{\tau(0)}\right)$.)

