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Abstract

The purpose of the present note is to discuss the automorphisms of an ar-
bitrary (H,C) space. For the case of group manifold, (H,C) space is toroidal if
we follow the definition/naming of toroidal group by Vogt [15] (see also Abe-
Kopfermann [1] and Kazama-Umeno [3]); if a complex Lie group G has no non-
constant (global) holomorphic functions, it is said to be a toroidal group, which
is first defined and named (H,C) group by Morimoto [10] (also see [11] by the
present author) in the more general setting. As a generalization of compact
complex torus, toroidal group G is generically isomorphic with holomorphic au-
tomorphism group Aut(G) up to connectivity. We consider the problem related
to this result. 1

1 Introduction

First we give a short summary of fundamentals of complex Lie groups for the readers’
convenience. A group G is a complex Lie group if it is a complex manifold whose
group operation μ : G × G → G, defined by μ(g, h) := gh−1, is holomorphic. For the
present moment we assume G to be connected unless otherwise stated. As was stated
in [11](see also [7, 8, 10]) we have the two fundamental structure theorems of complex
Lie group G as follows:

Theorem 1.1 Let K be a maximal compact subgroup of G. Then the complexifi-
cation Kc of K (see [7] for details) is a closed reductive complex subgroup G and the
factor space G/Kc is biholomorphic to a complex affine space Cα. Hence G is biholo-
morphic to the product complex manifold Kc × Cα (see [11] for the precise definition
of the complex characteristic index α = α(G) of G). If G itself is a reductive complex
Lie group then G contains a unique maximal Stein subgroup S, such that S is normal
and the factor group G/S is a complex torus. Thus G has the structure of holomorphic
fiber bundle over complex torus of dimension β = β(G) with Stein fiber S × Cα.

Theorem 1.2 There is a maximal toroidal subgroup T of G, contained in the center
Z = Z(G) of G, such that the factor group G/T is a Stein group. Then T is equal
to the Zariski closure (in G) of the maximal complex subgroup Ko of K. The complex
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analytic invariant index β = β(G) is defined to be the complex dimension δ(Ko) of Ko

and is equal to the completeness of G, denoted com(G) which is independent of the
choice of K [11].

The readers are referred to [10] for a detailed proof of the second theorem and we
instead give some basic characteristics of S,Ko and T , since it would be useful for
them to understand our main result. A complex Lie group G is a Stein group if it
is a Stein manifold as a group manifold. A subgroup S of an arbitrary complex Lie
group G is a maximal Stein subgroup if it is a Stein group, and there are no larger
Stein subgroups containing S. As for the second theorem we should mention that T
is defined as follows. Let X be a complex space, and let O(X) be the set of global
holomorphic functions on X and we set Xx := {x ∈ X; f(z) = f(x), f ∈ O(X)}. Then
it is observed that Xx is a complex analytic subvariety which is invariant under the
biholomorphic automorphism group Aut(X) of X [11]. Morimoto [?] proved T = Ge

is a central complex subgroup of G and the quotient complex Lie group G/T is a Stein
group, such that O(G) = O(G/T ). Thus as a corollary to the above theorem we find
O(G) is a Stein algebra for every complex Lie group G.

2 The automorphism group of a complex space

We can formulate some problems in the holomorphic symmetry of a complex space
X. First we consider the set of all biholomorphic self-mappings of X, which forms a
group, called the automorphism group of X, denoted Aut(X), with the multiplication
defined by the composition of two automorphisms. Then it would be natural to ask
the following

Question What is Aut(X) ? Is it a Lie transformation group (with the compact
open topology) which acts holomorphically on X ? If so, determine (the dimension of)
Aut(X), e.g.,, its group structure.

In some well known cases this task has been done by several authors (see [4] for classical
results as a bibliography). There are answers in the most general setting of complex
space X. The one is for the bonded domain case, which says Aut(X) is a totally real
CR Lie group. Another one is for the compact case, which says Aut(X) is a totally
complex CR Lie group with the invariant complex structure J , in the sense that the
canonical action Aut(X) × X → X is holomorphic with respect to J . In these two
cases some concrete results are obtained for specific objects X. As far as the present
author knows there are few results beside these cases even in the CR category [12, 13].
For compact cases there is a general result that compact complex surface X of general
type doesn’t admit any non-trivial automorphisms. We may roughly say that X admits
abundant automorphisms if X is akin to homogeneous. Precisely saying we should give
the following

Definition 2.1 A complex space X is (holomorphically) heterogeneous if X admits no
non-trivial holomorphic automorphisms.

The opposite extreme is the well known
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Definition 2.2 A complex space X is homogeneous if Aut(X) acts transitively on X.

There are no definitions for the intermediate cases. Before giving the intermediate
definitions we prepare some preliminary notions. Take a point x ∈ X. We consider the
orbit Ox of x by Aut(X); Ox = {gx|g ∈ |Aut(X)}. In general it is not known whether
Ox is a complex analytic subvariety or not, except the special cases defined by some
additional assumptions. Among others, we should mention the case where Aut(X) is
the Lie transformation group G acting smoothly on X. Then we can smoothly identify
the subspace Ox with the coset space G/Gx equipped with the quotient topology,
where Gx is the isotropy subgroup of G at x. In general G is a CR Lie transformation
group with the invariant CR structure and we can consider every orbit Ox to be a
CR submanifold with the induced CR structure [12, 13, 14]. In this direction we have
no results on the CR property(e.g.,, CR codimension etc.,) of the orbits for specific
examples. To treat more general cases we consider the Zariski closure Ox of each orbit
Ox in X. For simplicity we denote it by Zx, which is a complex analytic subvariety by
definition.
We define the (local complex) homogeneity hx at a point x ∈ X by the complex dimen-
sion of Zx.

hx := dimC Zx

Then we define the (global complex) homogeneity h(X) of X by the maximum of hx.

h(X) := max{hx|x ∈ X}
Now we should give the following

Definition 2.3 A complex space X is of homogeneity h or X is homogeneous of degree
h iff h(X) is equal to h.

Thus in this terminology if X is homogeneous then obviously δ(X) = h(X), where
δ(X) denotes the complex dimension of X. But the converse is not true in general.
Some people say X is almost homogeneous if there exists an open orbit Ox which is
(topologically) dense in X. In this article we adopt the terminology that X is quasi-
homogeneous (with respect to Aut(X)), if X is homogeneous of degree δ = δ(X);
h(X) = δ(X). This is equivalent to the existence of a Zariski dense orbit Ox, which is
sometimes expressed a generic orbit.

Remark 2.1 It should be mentioned even if a generic orbit exists, it is not unique in
general as will be shown in the next section.

The category of complex spaces is defined naturally; a morphism of two objects X → Y
is a holomorphic mapping. Then taking the holomorphic function algebra O(X) we
obtain the contravariant functor F to the category of complex commutative algebras
with the usual morphisms. For those spaces of high homogeneity we could get lots of
information from their function algebras. For an automorphism f : X → Y we have
the induced automorphism f∗ : O(Y ) → O(X); f ∗ = F(f), and O(X) = F(X),etc.,.
Especially for Stein object X, this functor is contravariantly isomorphic and we can
treat the homogeneity equivalently in both categories. But in the (H,C) cases this
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functor cannot play any role, since it is a trivial functor. But there are infinitely many
(H,C) spaces which are homogeneous. So for this class we should directly attack the
spaces themselves and their automorphisms. We will try this task in the next section.

3 (H,C) space

In the previous section we gave an idea to classify complex spaces by the homogeneity.
Here in the present section we would like to classify complex spaces by the abundance
of its holomorphic functions O(X). The most abundant one is the class of Stein spaces,
and the opposite extreme is the class of (H,C) spaces due to Morimoto [?]. The com-
pactness of X is a sufficient condition to belong to (H,C) class. By Hartogs phenomena
it is not a necessary condition, since a Zariski open subset Y of a compact complex
space X belongs to (H,C) class, if the complementary subset X − Y is an analytic
subvariety of codimension greater than one. In order to simplify the expression from
now on we use the term (H,C) not only as an attributive but also a predicate adjective;
instead of saying X belongs to (H,C) class we say X is (H,C). So we are mainly inter-
ested in holomorphically non-compact cases; if Y has a compactification X such that
complex codimension of (X−Y ) is less than 2, Y is said to be holomorphically compact.
In order to systematically study (H,C) spaces it would be convenient to introduce the
following

Definition 3.1 An (H,C) space X is reducible if there exist positive dimensional closed
subspaces X1, X2 such that X is biholomorphically equivalent to the product space
X1 × X2. If it is not reducible then it is said to be irreducible. If X is expressed as a
product space Πk

i=1Xi of irreducible subspaces {Xi|i = 1.2, . . . k} we say each Xi is an
irreducible component of X.

Remark 3.1 Each irreducible component is obviously (H,C) and hence may be called
irreducible (H,C) component or factor.

Remark 3.2 At the present moment we have no general results on the uniqueness of
these components up to order.

Remark 3.3 Abe [1] proved a quasi-abelian variety is a quasi-projective variety, which
suggests the similar philosophy as ours in the (H,C) case, since both object have a
projective algebraic compactification.

As for an (H,C) space X in general we will develop systematic approach not here but
in the forthcoming paper [14]. Instead we treat an (H,C) complex Lie group G in
the next section. Owing to the pioneer work of Morimoto [?] it is an abelian group
whose universal covering group G̃ is a complex vector spaceCn. We can take R linearly
independent vectors {e1, e2, . . . , en} so that they are C linearly independent, hence form
a base of complex vector space G̃ = Cn. Let π be the canonical projection G̃ → G.
Then its kernel Γ is a discrete subgroup of the complex vector space Cn, that is referred
to the (associated) lattice of G. We can take a finite set of R-linearly independent
vectors {γi|i = 1, 2, . . . r} together with {e1, e2, . . . , en} form a base of G̃ over R. Thus
as a real Lie group G is isomorphic to the direct product group Πn+r

i=1 S1 × Rn−r. So
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if r = n, G is the ordinary (compact) complex torus of complex dimension n. If
0 < r < n, then G is a non-compact (H,C) group or toroidal group. If r = 0, then G is
holomorphically equivalent to the algebraic torus (C∗)n of complex dimension n , hence
not (H,C). By Kazama Umeno [3] or Vogt [15] we know as cohomological conditions for
an (H,C) group G, given in terms of the linear independence of the lattice generators
over the rational number fields Q.

4 The automorphism group of a toroidal group

Now we follow the notation in the preceding section. Let G be a an (H,C) group of
complex dimension n with the lattice Γ of rank m = n + r. Here we investigate the
structure of Aut(G), where we consider G to be a complex space forgetting it is a
complex Lie group. Thus an element f ∈ Aut(G) has nothing to do with the group
operation of G by definition. But an element g ∈ G is naturally considered an element
of Aut(G) by translation. Thus, before stating a theorem, we prepare the following

Definition 4.1 (translation) Translation t of G is a holomorphic transformation of
G that is given by the following mapping:

t(x) = x + a

for some element a ∈ G. To emphasize the dependence of t on an element a we
denote t by ta. The group of translations forms a subgroup of Aut(G), called the
translation group of G; t : G → Aut(G) defined as above is obviously an injective
group homomorphism.

The natural question is whether it is surgective. Now we state

Theorem 4.1 (Abe [?] Above homomorphism t is generically an isomorphism, or
equivalently every holomorphic automorphism of G is given by some translation ta for
an element a ∈ G up to finite symmetries.

Proof.The readers are kindly referred to the forthcoming paper for the a generalization
([14]). The proof given here is essentially the same with the compact case, but we
include it here for completeness. Anyway let us take an arbitrary automorphism f of
G. Then taking the universal covering G̃, we get the lift f̃ of f . By definition f̃ is
a holomorphic self-mapping of G̃. Since f is an automorphism f has a holomorphic
inverse f−1. Thus f−1 has a lift f̃−1, which is a holomorphic self mapping of tdG. From
the uniqueness of the covering mapping we have the identity (f̃)(f̃−1) = idG̃, which
shows the existence of the canonical homomorphism π∗ : Aut(G) → Aut(G̃); π ∗ (f) =
f̃ . Since f̃ : G̃ → G̃ is invariant under the action of the lattice Γ, it satisfies the
following equations:

f̃(z + γ) = f̃(z) + γz, z ∈ G̃, γ, γz ∈ Γ,

where γz is the additive automorphic factor with respect to the lattice Γ, which is not
co-compact since we have only to consider a non-compact (H,C) group G. We can
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express the mapping f̃ : Cn → Cn in terms of the coordinate functions z1, z2, . . . , zn

as follows:

f̃(z) = (f̃1(z), f̃2(z), . . . , f̃n(z)), z = (z1, z2, . . . , zn) ∈ Cn.

We have the following commutative diagram:

G̃ = Cn f̃→ G̃ = Cn

↓ π ↓ π

G = Cn/Γ
f→ G = Cn/Γ

whose rows are isomorphism. The commutativity is shown above. Then each en-
tire holomorphic function f̃j on Cn is not pushed down to the quotient holomorphic
functionfj on the lower row so that the following diagram be commutative:

G̃ = Cn f̃j→ C
↓ π

G = Cn/Γ
fj

↗
But passing through to the respective partial differential of the function which can be
well defined by using the additive automorphic factor which is reduced to the respective
constant due to the discreteness of Γ. Then all of them are constant since the base
space is (H,C). Thus we deduce f is a linear mapping, from which there follows f is a
translation up to the signature of the respective partial derivative of each coordinate
representation fj. Q.E.D..

5 Final remarks on automorphisms of holomorphic principal
bundles

Morimoto [9] obtained a result on automorphisms of holomorphic principal bundles:

Theorem 5.1 (Morimoto [9]) Let P := P (M,G) be a holomorphic principal bundle
over a compact complex manifold M as a base space, with the fiber complex Lie group
G. Then the automorphism group AutF (P ) is a complex Lie transformation group
acting holomorphically on P . Furthermore we have the canonically induced complex
Lie group homomorphism π∗ : AutF (P ) → Aut(M).

He also proved the surjectivity of the above homomorphism under some additional
conditions ;the one is the existence of a holomorphic connection of P (M,G) and the
other is the vanishing of the first Betti number of M .

Remark 5.1 In our setting the (H,C) group G is a holomorphically nontrivial holo-
morphic principal bundle P (S, T ) as was stated in the beginning theorem, where S is
the maximal Stein subgroup which is normal in G since G itself is abelian and T is
a compact complex torus obtained as a quotient group G/S. Then we have an exact
sequence of complex Lie group as follows:

0 → S → G → T → 0
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. Then we have the associated sequence

0 → ker π → AutF (G) → Aut(T ) → 0.

Obviously the second condition above is not satisfied but the first one is not examined
yet. Anyway above theorem is a partial example of Morimoto’s theorem and proposition
in [9], except the connectivity of Aut(T ), since the second exact sequence is generically
the same with the first one where ker(π) is equal to the typical fiber S, π denoting the
natural surjection G → T = G/S.
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