The symmetric ribbon number of knots with symmetric union presentations

Toshifumi Tanaka

Key words：symmetrc union，Jones polynomial，ribbon knot．
Institution：Department of Mathematics，Faculty of Education，Gifu University，Yanagido 1－1，Gifu，501－1193，Japan．

Abstract

In this paper，we introduce the symmetric ribbon number for symmetric unions and show that there exists an infinite family of symmetric unions with symmetric ribbon number two by the Jones polynomial．

1 Introduction

A symmetric union［4］is a knot which is obtained from the connected sum of a knot and its mirror image by inserting some vertical twists along the symmetry axis to the diagram．A symmetric union is known to be a ribbon knot．In this paper，we define the symmetric ribbon number for a symmetric union which is closely related to the ribbon number of a ribbon knot［5］and study it by using the Jones polynomial．

For a polynomial $f(t) \in \mathbb{Z}\left[t, t^{-1}\right], \max -\operatorname{deg} f(t)($ or $\min -\operatorname{deg} f(t))$ is the maximal degree（or minimal degree） of $f(t)$ and let red－degf $(t)=\max -\operatorname{deg} f(t)-\min -\operatorname{deg} f(t)$ ．

Theorem 1．1．Let \bar{K} be a knot with a 1－banded symmetric union presentation $D_{K} \cup D_{K}^{*}(n)$ ．Then we have $V_{\bar{K}}(t)=1-(-1)^{n} t^{-n}+(-1)^{n} t^{-n} V_{K \sharp K^{*}}(t)$ ．In particular，if $V_{\bar{K}}(t) \neq 1$ ，then red－deg $V_{\bar{K}}(t)=2$ max－deg $V_{K \sharp K^{*}}(t)$ ．
Theorem 1．2．Let Let \bar{K} be a knot with a 2－banded symmetric union presentation $D_{K} \cup D_{K}^{*}(m, n)$ ．If $D_{K} \cup$ $D_{K}^{*}(0, n)$ and $D_{K} \cup D_{K}^{*}(m, 0)$ are 1－banded symmetric unions then we have $V_{\bar{K}}(t)=1-(-1)^{m+n} t^{-m-n}+$ $(-1)^{m+n} t^{-m-n} V_{K \sharp K^{*}}(t)$ ．In particular，if $V_{\bar{K}}(t) \neq 1$ ，then red－deg $V_{\bar{K}}(t)=2$ max－deg $V_{K \sharp K^{*}}(t)$ ．

The notation for prime knots up to 10 crossings is due to Rolfsen＇s book［1］．In Section 2，we shall define a symmetric union．In section 3，we shall define a banded symmetric union presentation for a symmetric union． In section 4，we shall prove Theorems 1.1 and 1．2，define the symmetric ribbon number for a symmetric union and show the existence of a symmetric union with symmetric ribbon number two．

2 Definitions

Definition 2．1．Let D be an unoriented link diagram in the 2 －sphere．The bracket polynomial of $\mathrm{D},<D>$ can be defined as a polynomial which satisfies the following identities．
i）$<\bigcirc>=1$ ，
ii）$<D \cup \bigcirc>=-\left(A^{2}+A^{-2}\right)<D>$ ，
iii）$<\underset{\text { r }}{\text { r }}=A<$ $\left.>+A^{-1}<\right)(>$ ．
Then we define the Jones polynomial of an oriented link L by $V_{L}(t)=\left\{\left(-A^{3}\right)^{-w\left(D_{K}\right)}<D_{L}>\right\}_{t^{1 / 2}=A^{-2}} \in$ $\mathbb{Z}\left[t^{1 / 2}, t^{-1 / 2}\right]$ for any diagram D_{L} for L ，where $w\left(D_{L}\right)$ be the writhe of D_{L}［2］．

Here we define a symmetirc union [4] as follows. We denote the tangles made of half twists by integers $n \in \mathbb{Z}$ and the horizontal trivial tangle by ∞ as in Figure 1.

Figure 1: Tangles.

Definition 2.2. Let D_{K} be an unoriented diagram of knot K and D_{K}^{*} the diagram D_{K} reflected at an axis in the plane. We take $k 0$-tangles $T_{i}(i=0, \ldots, k)$ on the symmetry axis as in Figure 2(a). Then we replace the tangles T_{i} with $T_{0}=\infty$ and $T_{i}=n_{i} \in \mathbb{Z}$ for $i=1, \ldots, k$ as in Figure 2(b). We call the resultant diagram a symmetric union and write $D_{K} \cup D_{K}^{*}\left(n_{1}, \ldots, n_{k}\right)$ and the diagram is called a symmetric union presentation for K. We say that a knot K is a symmetric union if K has a symmetric union presentation.

(a)

(b)

Figure 2: A symmetric union.

3 Banded symmetric unions

Definition 3.1. Let K be a non-trivial knot with a symmetric union presentation $D_{K} \cup D_{K}^{*}\left(n_{1}, \cdots, n_{k}\right)$. If $D_{K} \cup D_{K}^{*}(\infty, \cdots, \infty)$ is a trivial link diagram, then we call K a k-banded symmetric union (or simply a banded symmetric union) and $D_{K} \cup D_{K}^{*}\left(n_{1}, \cdots, n_{k}\right)$ a k-banded symmetric union presentation.
Proposition 3.2. Every symmetric union has a banded symmetric union presentation.
Proof. Let K be a knot with a symmetric union presentation $D_{K} \cup D_{K}^{*}\left(n_{1}, \cdots, n_{k}\right)$. Let L be a link with the diagram $D_{K} \cup D_{K}^{*}(\infty, \cdots, \infty)$ obtained from the symmetric union presentation. Then L can be transformed into a trival link by a sequence of bandings [3] of K concerning the bands which are symmetric with respect to the symmetry axis on a diagram of symmetric union for K as in Figure 3.

By using an isotopy, K can be transformed into a knot with a banded symmetric union presentation along the bands as in Figure 4.

Figure 3: Bandings for a symmetric union.

Figure 4: Transforming K along bands.

4 Knots with symmetric ribbon number two.

For an n-component link L, let $\bar{V}_{L}(t)=V_{L}(t) / V_{O_{n}}(t)$ where O_{n} is an n-component trivial link.
Proof of Theorem 1.1. By [5, Theorem 1.1], we know that

$$
V_{\bar{K}}(t)=\left(1-(-1)^{n} t^{-n}\right) \bar{V}_{D \cup D^{*}(\infty)}(t)+(-1)^{n} t^{-n} V_{D \cup D^{*}(0)}(t) .
$$

Since $V_{D \cup D^{*}(0)}=V_{K}(t) V_{K}\left(t^{-1}\right)$ and $\bar{V}_{D \cup D^{*}(\infty)}(t)=1$, we have $V_{\bar{K}}(t)=1-(-1)^{n} t^{-n}+(-1)^{n} t^{-n} V_{K}(t) V_{K}\left(t^{-1}\right)$. Let $a=\max -\operatorname{deg} V_{K \sharp K^{*}}(t)$. Then note that $\min -\operatorname{deg} V_{K \sharp K^{*}}(t)=-a$ and $a \geq 0$. If $a>0$, then red-deg $V_{\bar{K}}(t)=$ $a-(-a)=2 a$. If $a=0$, then $V_{\bar{K}}(t)=1$. Thus we know that if $V_{\bar{K}}(t) \neq 1$, then red-deg $V_{\bar{K}}(t)=2 a=2$ max$\operatorname{deg} V_{K \sharp K^{*}}(t)$.

Remark 4.1. Lamm found that symmetric union presentations of all ribbon knots with minimal crossing number equal to or less than ten [4]. It is easily seen that all of them are represented by a symmetric union of an alternating knot, the knots $6_{1}, 8_{8}, 8_{20}, 9_{46}, 10_{3}, 10_{22}, 10_{35}, 10_{137}$ and 10_{140} have 1-banded symmetric union presentations, the knots $8_{9}, 9_{27}, 10_{42}, 10_{48}, 10_{99}, 10_{123}, 10_{129}, 10_{155}$ have 2-banded symmetric union presentations, and $9_{41}, 10_{75}$ and 10_{153} have 3 -banded symmetric union presentations.

Proof of Theorem 1.2. By the definition of the Jones polynomial, we have $V_{\bar{K}}(t)=\left\{\left(-A^{3}\right)^{-w\left(D_{K} \cup D_{K}^{*}(m, n)\right)}<\right.$ $\left.D_{K} \cup D_{K}^{*}(m, n)>\right\}_{t^{1 / 2}=A^{-2}}$ and $w\left(D_{K} \cup D_{K}^{*}(m, n)\right)=-m-n$. As in the proof of [5, Theorem 1.1], we can calculate $<D_{K} \cup D_{K}^{*}(m, n)>$ as follows.
$<D_{K} \cup D_{K}^{*}(m, n)>=A^{m}<D_{K} \cup D_{K}^{*}(0, n)>+\frac{\left(-A^{-3}\right)^{m}-A^{m}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(\infty, n)>$,
$<D_{K} \cup D_{K}^{*}(0, n)>=A^{n}<D_{K} \cup D_{K}^{*}(0,0)>+\frac{\left(-A^{-3}\right)^{n}-A^{n}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(0, \infty)>$ and
$<D_{K} \cup D_{K}^{*}(\infty, n)>=A^{n}<D_{K} \cup D_{K}^{*}(\infty, 0)>+\frac{\left(-A^{-3}\right)^{n}-A^{n}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(\infty, \infty)>$.
So we have
$\left(-A^{3}\right)^{m+n}<D_{K} \cup D_{K}^{*}(m, n)>=(-1)^{m+n} A^{4(m+n)}<D_{K} \cup D_{K}^{*}(0,0)>+$
$(-1)^{m} A^{4 m} \frac{1-(-1)^{n} A^{4 n}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(0, \infty)>+(-1)^{n} A^{4 n} \frac{1-(-1)^{m} A^{4 m}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(\infty, 0)>+$
$\frac{\left(1-(-1)^{m} A^{4 m}\right)\left(1-(-1)^{n} A^{4 n}\right)}{\left(A^{-2}+A^{2}\right)^{2}}<D_{K} \cup D_{K}^{*}(\infty, \infty)>$.
Then $V_{\bar{K}}(t)=(-1)^{m+n} t^{-m-n} V_{D_{K} \cup D_{K}^{*}(0,0)}(t)+(-1)^{m} t^{-m}\left(1-(-1)^{n} t^{-n}\right) \bar{V}_{D_{K} \cup D_{K}^{*}(0, \infty)}(t)+$
$(-1)^{n} t^{-n}\left(1-(-1)^{m} t^{-m}\right) \bar{V}_{D_{K} \cup D_{K}^{*}(\infty, 0)}(t)+\left(1-(-1)^{m} t^{-m}\right)\left(1-(-1)^{n} t^{-n}\right) \bar{V}_{D_{K} \cup D_{K}^{*}(\infty, \infty)}(t)$.
By the assumption, we have
$\bar{V}_{D_{K} \cup D_{K}^{*}(0, \infty)}(t)=\bar{V}_{D_{K} \cup D_{K}^{*}(\infty, 0)}(t)=\bar{V}_{D_{K} \cup D_{K}^{*}(\infty, \infty)}(t)=1$ and $V_{D_{K} \cup D_{K}^{*}(0,0)}(t)=V_{K \sharp K^{*}}(t)$. Thus we have $V_{\bar{K}}(t)=(-1)^{m+n} t^{-m-n} V_{K \sharp K^{*}}(t)+(-1)^{m} t^{-m}\left(1-(-1)^{n} t^{-n}\right)+(-1)^{n} t^{-n}\left(1-(-1)^{m} t^{-m}\right)+\left(1-(-1)^{m} t^{-m}\right)(1-$ $\left.(-1)^{n} t^{-n}\right)=1-(-1)^{m+n} t^{-m-n}+(-1)^{m+n} t^{-m-n} V_{K \sharp K^{*}}(t)$. By using the same argument as in the proof of Theorem 1.1, we have $r e d-\operatorname{deg} V_{\bar{K}}(t)=2 a=2 \max -\operatorname{deg} V_{K \sharp K^{*}}(t)$ if $V_{\bar{K}}(t) \neq 1$.

Definition 4.2. The symmetric ribbon number of a symmetric union K is defined as the minimal number n for any n-banded symmetric union presentation for K.

Remark 4.3. It is easily seen that the ribbon number [5] of a symmetric union is equal to or less than the symmetric ribbon number.

Proposition 4.4. There exists an infinitely many ribbon number one knots with symmetric ribbon number two.

Proof. We consider the symmetric union K_{n} which can be represented by $D \cup D^{*}(n,-1)(n \geq 1)$ as in Figure 5 .

Figure 5: K_{n}

Since $D \cup D^{*}(n, \infty)$ and $D \cup D^{*}(\infty, \infty)$ are trivial links, we know that K_{n} is a ribbon number one knot and the symmetric ribbon number is equal to or less than two. By the definition of the bracket polynomial and the calculation in the proof of Theorem 1.2, we can calculate as follows.
$<D_{K_{n}}>=A^{n}<D_{K} \cup D_{K}^{*}(0,-1)>+\frac{\left(-A^{-3}\right)^{n}-A^{n}}{-A^{-2}-A^{2}}<D_{K} \cup D_{K}^{*}(\infty,-1)>$ where,
$<D \cup D^{*}(0,-1)>=-A^{19}+2 A^{15}-4 A^{11}+6 A^{7}-8 A^{3}+8 A^{-1}-7 A^{-5}+6 A^{-9}-4 A^{-13}+2 A^{-17}-A^{-21}$,
$\left.<D \cup D^{*}(\infty,-1)\right)>=A^{17}-A^{13}+A^{9}+A-A^{-7}+A^{-11}-A^{-15}+A^{-19}$.
So we have
$<D_{K_{n}}>=A^{n}\left(-A^{19}+2 A^{15}-4 A^{11}+6 A^{7}-8 A^{3}+8 A^{-1}-7 A^{-5}+6 A^{-9}-4 A^{-13}+2 A^{-17}-A^{-21}\right)+\left(\left(-A^{-3}\right)^{n}-\right.$
$\left.A^{n}\right)\left(A^{15}-2 A^{11}+3 A^{7}-3 A^{3}+4 A^{-1}-4 A^{-5}+3 A^{-9}-2 A^{-13}+A^{-17}\right)$.
Then we note that red-deg< $D_{K_{n}}>=4 n+36$. So red- $\operatorname{deg} V_{K_{n}}(t)=n+9$. Thus we know that $K_{2 m}(m \geq 1)$ does not have a 1 -banded symmetric union presentation by Theorem 1.1.

Remark 4.5. For example, 10_{129} and 10_{155} have 2-banded symmetric union presentations. However we do not know if the symmetric ribbon numbers of 10_{129} and 10_{155} are two.

Acknowledgements. The author is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research(C), 2022-2024(22K03310).

References

[1] D. Rolfsen, Knots and links, Publish or Perish. Inc. (1976).
[2] L. H. Kauffman, State models and the Jones polynomials, Topology. Vol. 26 (1987), 395-407.
[3] M. Eudave Muñoz, Band sums of links which yield composite links. The cabling conjecture for strongly invertible knots, Trans. Amer. Math. Soc. 330 (1992), no. 2, 463-501.
[4] C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537-550.
[5] T. Tanaka, The Jones polynomial of knots with symmetric union presentations, J. Korean Math. Soc. 52 (2015), no. 2, 389-402.

